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Abstract

Tracking online user behavior is essential for targeted advertising and is at the heart of the

business model of major online platforms. We analyze tracker-specific web browsing data

to show how the prediction quality of consumer profiles varies with data size and scope.

We find decreasing returns to the number of observed users and tracked websites. However,

prediction quality increases considerably when web browsing data can be combined with

demographic data. We show that Google, Facebook, and Amazon, which can combine such

data at scale via their digital ecosystems, may thus attenuate the impact of regulatory

interventions such as the GDPR. In this light, even with decreasing returns to data small

firms can be prevented from catching up with these large incumbents. We document that

proposed data-sharing provisions may level the playing field concerning the prediction quality

of consumer profiles.
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1 Introduction

Business models centered around the use of consumer data as a core asset have thrived in digital

markets. A prominent example is targeted online advertising, where advertisers often rely on

inferred consumer characteristics and preferences to deliver personalized ads (Johnson et al.,

2020; Rafieian and Yoganarasimhan, 2021). While consumers value enhanced products and

better matches, policymakers increasingly worry that the consolidation of digital platforms and

the consequent combination of different data sources might lead to less choice and exploitation

in the long run, making consumers worse off (Tucker, 2019; Economides and Lianos, 2021; Chen

et al., 2022). Understanding the link between data inputs and the quality of predictions of

consumer characteristics is important for marketing strategies as much as for policy discussions

on the necessity and design of regulation. Notably, data collection carries a cost in terms

of online privacy (Goldfarb and Que, 2023) and may give rise to competition concerns due

to potentially unsurmountable barriers to entry created by strong data network effects and

externalities (Hagiu and Wright, 2023). Despite the importance of these concerns, empirical

evidence on whether the scale and scope of data available to incumbents may represent a barrier

to entry for smaller competing firms remains scarce.

Web tracking allows firms to collect information on consumers’ browsing behavior to build

user profiles based on demographic or interest attributes, which may then be sold to advertising

companies (Neumann et al., 2019).1 Web tracking is enabled by small pieces of code embedded

in a website, which send information about the user to a third-party tracking firm when the

website is loaded. A prime example is Google Analytics, a free service that provides a dashboard

of usage statistics to website owners. After installing Google Analytics, websites effectively share

their users’ information with Google. The size and scope of a firm’s tracking network depend

on how many websites choose to use its services.2 Firms can increase the scale of their data by

tracking additional users or the scope of their data by collecting additional information about

users they already track.

In this paper, we measure the production function for demographic profile prediction quality

using web-browsing data observed by the 52 largest trackers on the Internet. We have access

to the full browsing history of over 75,000 US users over 12 months, alongside survey-based

demographic information including age, gender, income, and location. Combining these data

with domain-level tracking data, we exploit observed and simulated variation in the scale and

1Web tracking firms have also been labeled web technology vendors as they often provide services to website
publishers such as web analytics, social media sharing, or the placement of advertisements (Peukert et al., 2022;
Johnson et al., 2023).

2Data may be collected by third-party trackers on websites but also by the (first-party) websites that users visit.
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scope of tracker-collected data to estimate the prediction returns to data and study the role of

regulatory interventions for profile prediction.

Using a gradient boosting machine learning method, we first test how well consumers’ de-

mographics can be predicted based on their own and other users’ browsing data. To do so,

we define binary outcome variables for distinct demographic categories – such as specific age

or income levels – and retrain the prediction model for each outcome conditional on the data

available to each firm. This analysis generates a large set of prediction tasks including varying

data inputs associated with varying prediction qualities. In addition to using observed variation

in the scale and scope of data across trackers, we generate within-tracker variation in the scale

and scope of data by drawing random sub-samples of users and websites for each tracker. This

allows us to construct counterfactuals of varying data inputs for each tracker. The resulting

prediction quality and input data observations provide the basis for a systematic analysis of

data-enabled learning curves.

We then explore potential complementary effects on prediction quality when combining

individual browsing data with user demographic information. Large firms like Google, Facebook,

or Amazon indeed can directly obtain such information, at least partially, for instance by

eliciting their users’ birth date when creating an account. Such data access might play an

important role if data complementarities can help overcome decreasing returns in one type of

data (Peukert et al., 2023; Schaefer and Sapi, 2023). Finally, we estimate how prediction quality

changes with the introduction of regulatory interventions – such as the European General Data

Protection Regulation (GDPR) and the Digital Markets Act (DMA) – and discuss implications

for the competitive landscape in the web tracking market.

We find substantial variation in prediction quality across prediction tasks. For some demo-

graphic outcomes, web browsing data exhibits only little predictive power. In these instances,

we find that larger firms benefit only marginally, if at all, from their access to more extensive

browsing data. However, for prediction tasks where web browsing data yields higher prediction

quality, larger firms have an advantage over smaller firms with less data. Overall, we find de-

creasing returns to data in the number of users and tracked websites, both across and within

trackers. We also find evidence of data complementarities between web browsing data and de-

mographic information. For Google, Facebook, and Amazon (GFA) – the three largest tracker

firms who arguably have more direct access to users’ demographic information – combining de-

mographics with browsing data substantially enhances prediction quality. This improvement is

equivalent to the gains in prediction quality that can be achieved by relying solely on browsing

data from 100,000 domains, and such complementarity may therefore prevent smaller trackers
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from catching up with these large incumbents.

Data-sharing provisions, such as those mandated by the DMA, could help level the playing

field. We show that giving competing trackers access to demographic data significantly reduces

the gap between their prediction quality and that of Google. Finally, our results show that

the prediction quality of all trackers decreased after the implementation of the GDPR. This is

because websites substantially removed trackers, even in jurisdictions where GDPR does not

apply de iure (Peukert et al., 2022). However, large trackers can countervail these negative

effects through their ability to combine demographic information with users’ browsing data.

While the GDPR may have improved consumer privacy due to less tracking, indirectly, it also

seems to have increased the competitive position of Google, Amazon, and Facebook in the

web-tracking market.

Our study has important policy implications. The consolidation of digital ecosystems by in-

ternal and, especially, external growth through acquisitions of smaller competitors to enable the

use of rich consumer data raises concerns about reduced competition and potential exploitation.

This has been relevant in the past, as the combination and use of different data contributed to

raising barriers to entry and strengthening the dominance of large tech firms. Yet, evidence on

data complementarities underlying such market dynamics is lacking (Calvano and Polo, 2021).

The issue may become even more relevant in the exploding market for generative AI as data is

the core input for AI models. Data complementarities are likely to reinforce an already highly

concentrated industry. Thus, policymakers must balance the benefits of data accumulation and

its positive impact on improving product quality against privacy concerns and the risks associ-

ated with market dominance by a few large firms. Effective regulation should aim to ensure data

privacy and foster a competitive environment through access to data in which smaller firms can

thrive. This requires a deeper understanding of data-driven business models and their impact

on market dynamics.

We contribute empirical evidence to a largely theoretical literature that has highlighted the

role of data in providing firms with a competitive advantage (Gregory et al., 2021; Hagiu and

Wright, 2023). So far, the existing work on the value of consumer data focuses on single online

platforms (Bajari et al., 2019; Peukert et al., 2023; Schaefer and Sapi, 2023; Aguiar et al., 2023;

Lei et al., 2023; Luca et al., 2023), while we investigate differences across platforms. The three

most related papers develop and discuss methods to infer consumer profiles from web tracking

data (Trusov et al., 2016), provide evidence that consumer profiles offered by data brokers are

of low quality overall (Neumann et al., 2019), and estimate that information from web browsing

histories can be much more valuable for personalized pricing than pure demographic information
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(Shiller, 2020). However, they are limited to studying a few intermediaries, i.e., search engines,

ad networks, and data brokers. Further, they do not focus on analyzing differences among

intermediaries of different sizes, or other competitive dynamics, and do not attempt to evaluate

policy interventions in the web-tracking market. We add systematic evidence to confirm prior

work showing that firms can improve their predictions of consumer profiles with more and

broader data, albeit with decreasing returns to scale and scope (Klein et al., 2023; Peukert

et al., 2023; Schaefer and Sapi, 2023).

Notably, we show that significant competitive benefits come from non-behavioral data that

the largest and vertically integrated firms in the industry can easily collect at scale. Based on our

evaluations of the GDPR, which increased the cost of collecting behavioral data and therefore

disproportionally hurt small and non-integrated firms, and the DMA’s provision mandating

large firms to share data, we show that privacy regulation might counteract competition policy

goals.

This paper is organized as follows. Section 2 provides the industry and policy background

and Section 3 describes the data. Section 4 explains our approach to estimating the returns to

data and Section 5 shows the main results. Section 6 shows the ex ante and ex post evaluations

of privacy and data sharing regulations. Section 7 concludes.

2 Industry background and policy discussion

2.1 Consumer profiling and web tracking

Information about consumer profiles ranges from basic demographics to fine-grained preferences

for specific product characteristics and can be valuable to advertisers, both for positive and

negative targeting. Positive targeting focuses on consumers who are likely to respond well to

specific ads, aiming to increase engagement and conversion rates. In contrast, negative targeting

aims to help advertisers avoid unnecessary ad impressions. Online advertising vendors therefore

typically offer a variety of targeting options through so-called audience selection tools that let

advertisers filter on specific variables (see screenshots from Facebook and Google in Figure 1).
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Figure 1: Example: Screenshots of audience selection tools

Panel A: Facebook
Panel B: Google

Source: https://sproutsocial.com/insights/facebook-ad-targeting/ and https://support.google.com/

displayvideo/answer/6071542?hl=en

Advertising intermediaries can gather information about Internet users’ demographics through

several means. As illustrated in Figure 2, online platforms often require users to directly share

personal information – including their birthday, gender, or geographic location – when signing

up for their services. Often, however, consumer profiles and purchase probabilities are inferred

from users’ behavioral data (e.g. a user’s clickstream; Trusov et al., 2016; De Cnudde et al.,

2020; Shiller, 2020).

Figure 2: Example: Screenshots of major platforms’ signup procedure

Panel A: Google Panel B: LinkedIn

Note: Screenshots taken in June 2024.

The machine learning approaches used to predict user profiles are implemented in stan-

dard open source software and are computationally relatively inexpensive (Trusov et al., 2016;

De Cnudde et al., 2020). This makes consumer profiling scalable to millions of users, and there is

likely little room for firms to gain a competitive advantage based solely on software engineering

and computational power. The key ingredient appears to be access to data, which has led to

the flourishing of an entire industry devoted to online behavioral data collection over the past

few decades (Lerner et al., 2016). Field experiments indeed show that the quality of consumer
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profiling, i.e. the accuracy of estimates relative to the ground truth, is often not very high

and varies substantially across suppliers (Neumann et al., 2019), pointing towards a potential

competitive advantage in data.

How does web tracking work? Making use of the modular nature of modern websites and

apps, web-tracking technologies pick up the digital traces that users leave behind when accessing

the Internet. For example, as a user navigates to news.com, the web server sends so-called

requests to load resources from third-party domains (e.g., an image hosted on tracker.com).

Many use cases of third-party requests are related to online advertising. For example, third-

party requests can be necessary to deliver content (e.g., advertising creatives), or helpful to

identify the same machine or individual across time and websites (e.g., via cookies). The

corresponding web server processes the request and delivers the response, but may also store

meta information such as the context in which the request originated. For example, information

on the website that originated the request and the IP address of the user. Storage can happen

both server-side and as cookies on the user’s device. The next time the same third-party service

is requested from a different website, the same user is identified based on the meta information,

enabling cross-website tracking.

2.2 Privacy and competition policy issues in digital markets

Web tracking is now ubiquitous, and its massive scale has raised consumer privacy concerns

and prompted global regulatory action to curb online data collection and processing. As early

as 2002, the EU introduced the e-Privacy Directive (Directive 2002/58/EC) and its amendment

“cookie law” (Directive 2009/136/EC), focusing on data protection in electronic communi-

cations and cookie consent. The landmark GDPR, implemented in May 2018, replaced the

previous directive with a robust, comprehensive framework. GDPR strengthened individuals’

rights, increased accountability for data processors, and introduced substantial penalties for

non-compliance. Overall, it made cookie-based web tracking more costly, difficult, and trans-

parent.

In contrast, the US has a more fragmented approach with sector-specific and state-level

laws. Most recently, the California Consumer Privacy Act (CCPA), which took effect in January

2020, marked a significant step towards comprehensive privacy regulation in the US. The CCPA

grants California residents broad rights over their personal data, including the right to know

what data is being collected, the right to delete personal data, and the right to opt out of the

sale of their data. Following the CCPA, other states have begun to consider or enact similar

privacy laws, signaling a potential shift towards more uniform privacy standards across the
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country. However, evidence shows that the GDPR effectively already impacts US consumers, as

websites with international audiences adopt EU standards globally to comply with the stringent

EU regulations (Peukert et al., 2022).

Further, a growing body of literature highlights an important intersection between privacy

and competition policy, mostly because compliance costs are often too high for small firms

leaving large firms at a competitive advantage (Campbell et al., 2015; Kira et al., 2021; Peukert

et al., 2022; Johnson et al., 2023). Hence, while privacy regulations help consumers protect

their personal data, in pre-existing concentrated markets they may further stifle competition if

data are necessary to compete in markets for personalized products and services. Competition

concerns are particularly strong when data are difficult to substitute for new entrants, com-

plementarities between various types of data are strong, or targeting has increasing returns to

scale for data inputs (Calvano and Polo, 2021).

The fact that privacy policy cannot be separated from competition policy is now recognized

by regulators. With a few large firms dominating many digital markets, potentially stifling

innovation and consumer choice, regulators have introduced new competition policy measures

that explicitly take data as a source of competitive advantage into account. In a move from

an ex-post to an ex-ante approach to competition policy and antitrust, the EU introduced the

DMA in 2023. The DMA aims to create more competition by imposing specific obligations

on “gatekeepers” – large online platforms with significant market influence. One key aspect of

the DMA is the requirement for these gatekeepers to share data with smaller competitors and

third parties, fostering a more competitive and dynamic market environment (Article 6(10),

DMA). This data-sharing obligation is designed to prevent monopolistic practices, promote

interoperability, and ensure that smaller firms have the opportunity to innovate and compete

on a level playing field.

In the US, competition policy in digital markets has also been a topic of significant debate,

though it has not yet resulted in legislation as comprehensive as the DMA. Recent years have

seen increased scrutiny of major tech companies by federal and state regulators, with several

high-profile antitrust lawsuits filed against firms like Google, Facebook, and Amazon. These

cases focus on practices such as self-preferencing, exclusionary contracts, and acquisition of po-

tential competitors. While data-sharing obligations similar to those in the DMA have not been

formally legislated, there are growing calls from lawmakers and advocacy groups for measures

that would level the playing field.

Despite these efforts, the US approach remains less prescriptive than the EU’s, reflecting

a different regulatory philosophy that balances competition enforcement with concerns about
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over-regulation. However, the ongoing scrutiny and legislative initiatives indicate a shift towards

a more robust competition policy in the US digital markets, mirroring some of the objectives

of the EU’s DMA. US consumers may already be affected by the DMA because of the extrater-

ritorial reach of EU law. Large tech companies may implement changes globally rather than

maintain different standards for different regions, leading to improved data access and increased

competition to the benefit of consumers outside of the EU.

3 Data

We use individual-level desktop browsing data from a sample of the U.S. population collected

by market research firm Comscore, which covers just over 75,000 users.3 The complete web

browsing history of each user is collected by a software tool that runs in their desktop’s back-

ground. Participants, who receive monetary compensation and other incentives, fill in a survey

of basic demographics, such as age, education level, geographic location, and household income.

For each user, we observe the domain names of all websites visited in 2018, as well as the time

spent on each domain. For the main part of our analysis, in Sections 5 and 6.1, we restrict

the browsing data to the 20 weeks after the GDPR was introduced on May 25, 2018.4 In

Section 6.2, we also make use of the browsing records from the 20 weeks before GDPR was

introduced to measure the change in trackers’ data collection and prediction quality induced by

the introduction of this regulation.

We combine the individual-level clickstream data with historical information on websites’

connections to third-party services at the website domain level (e.g. digitalecon.org). We ob-

tain historical data on websites’ requests from the HTTPArchive, a non-profit project that

periodically crawls hundreds of thousands of websites, records the data, and makes it publicly

available.5

To reduce the complexity of our dataset, we aggregate the information from HTTPArchive

over time. If a website makes one request to a third-party service during our observation

period, we consider the website to be “tracked” by that specific third-party service throughout

our sample period. That is, we make the implicit assumption that a websites’ connections

3Our paper is not the first to use clickstream data from media measurement and analytics companies such as
Comscore or Nielsen (Trusov et al., 2016; Dambra et al., 2022; Aguiar et al., 2023). Prior research has established
that these data provide a good representation of the population with Internet access (Aguiar et al., 2018). Even
if users signing up for Comscore’s service have different privacy preferences than the general population, this is
only a concern for our analysis in so far as privacy preferences affect the scope and intensity of web browsing.
With these caveats, it remains to note that clickstream data collected with voluntary consent of users is the best
available data source for our study.

4Specifically, we restrict the observation period to the calendar weeks 21-40 of the year 2018.
5These data are available via httparchive.org.

8

https://httparchive.org


to third-party trackers remain stable over time. Table 1 provides summary statistics of the

Comscore data alone and the merged data with HTTPArchive, distinguishing between the pre-

and post-GDPR periods. While about 12% of the domains from the Comscore sample appear

in the HTTPArchive data, these account for over 77% of all recorded clicks (78% pre-GDPR).

More than 99% of the sample users have at least one of their visited domains appear in the

HTTPArchive data.

Table 1: Comscore and HTTPArchive data

Number of Number of Number of Share of
Period users domains clicks Data source tracked clicks

Pre-GDPR 75,407 1,275,203 278,363,427 Clickstream
Pre-GDPR 75,158 172,120 217,985,811 Clickstream & Tracking 78%
Post-GDPR 75,523 1,274,237 256,614,844 Clickstream
Post-GDPR 75,150 155,247 197,536,318 Clickstream & Tracking 77%

The HTTPArchive data provides the list of all domains to which a website sends communica-

tion requests when a user visits that website. We use information from whotracks.me to match

these requested domains to trackers and to the firms operating these trackers. For our analy-

sis, we include Google and Amazon, which operate multiple individual trackers, as combined

entities and the 50 largest trackers in terms of website clicks. These 50 trackers also include

individual trackers operated by Google and Amazon. Figure 3 shows the distribution of tracked

users and website domains across trackers, distinguishing between the 52 trackers used in our

analysis in black and the excluded trackers in grey. Google, Facebook, and Amazon (GFA) are

the largest firms in terms of tracked domains in our sample period, with 155,160, 133,285, and

97,011 tracked domains, respectively. Table 5 in Appendix A provides of a descriptive overview

of the trackers in the analysis sample.

Computing the number of clicks per website a user visits over the observation period, we

jointly observe, for each user, the intensity of visits per domain, the trackers active on each

domain, and the user’s characteristics.

4 Evaluating consumer profile predictions with varying data

To characterize the impact of varying scale and scope of web-tracking data on the quality of

consumer profiling, we estimate how well firm i can predict a specific demographic s of consumer

j, given the browsing history of all observed consumers (Ni) across all tracked domains (Ki).

We focus on 39 demographic subgroups by age, geographic location (census regions), racial

background and country of origin, education levels, household size, household income, and
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Figure 3: User - Domains distribution across trackers
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whether children live in the household. The classification of users into these subgroups represents

39 binary prediction tasks.

In the data, each observation corresponds to a user. We construct a predictor variable per

website domain that takes the value of a user’s total number of clicks in the entire sample

period. This setup yields a high-dimensional dataset, where the number of predictors largely

exceeds the number of observations. For instance, when we perform a prediction task using

the full sample including all tracked domains, we have 155,247 predictors (domains) for 75,150

observations (users).

To implement a large number of tracker-specific prediction tasks, at a minimum 52 times

39 tasks, using these high-dimensional data within reasonable time, we use the Light Gradient

Boosting Machine (LightGBM) algorithm (Ke et al., 2017). As other gradient boosting algo-

rithms such as XGBoost, LightGBM builds decision trees sequentially. However, LightGBM

incorporates two novel techniques, namely gradient-based one-side sampling and exclusive fea-

ture bundling, which allow drastic reductions in training time on large datasets.6

For each prediction task, we minimize the binary logistic loss function. The target predic-

tion measure is the area under the receiver operation characteristic (ROC) curve (AUC), which

6Gradient-based one-side sampling discards data instances with small gradients (i.e. errors) and puts more weight
to high gradients during training. Therefore, training is focused on data points that will benefit the model the
most. Exclusive feature bundling groups mutually exclusive predictors together, reducing the data’s dimension-
ality. Ke et al. (2017) show that LightGBM can significantly outperform other gradient-boosting algorithms in
terms of computational speed and memory consumption.
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we evaluate using 5-fold cross-validation.7 The AUC quantifies the location of the ROC curve,

which represents all achievable trade-offs between false positive rates and true positive rates by

a given prediction technology. It ranges from 0.5 (random classification) to 1 (perfect classifi-

cation). The AUC is a robust metric insensitive to imbalanced datasets, where the number of

positive and negative examples is not equal. This makes it a suitable measure for our purposes

since some demographic groups such as high-income or specific age ranges are imbalanced.

By applying the same algorithm to each tracker and prediction task, we abstract from dif-

ferences in prediction technologies across trackers. That is, we isolate the effect of information

content in the meta-data generated by users’ browsing histories on prediction quality. If larger

tracker firms such as Google or Facebook could improve their prediction technology relative

to smaller trackers, e.g. due to larger computational resources or better algorithms, we would

underestimate the predictive returns that can be extracted from meta-data collected on their

tracked websites. However, as discussed above, the methods broadly used for profile predic-

tions using structured data such as browsing histories are largely off-the-shelf machine learning

methods that are used in research and industry (Trusov et al., 2016; De Cnudde et al., 2020).

Thus, we expect the advantage of superior engineering and computational power to be limited

in this context, which is in line with empirical results from online search (Klein et al., 2023).8

5 Results

5.1 Tracker size and prediction quality

We first provide a graphical description of how increasing web browsing data translates into

prediction quality. Figure 4 depicts the returns to data across trackers for four distinct prediction

tasks, where we measure the amount of data by the number of tracked domains on the horizontal

axis. The figure reports four subplots ordered by the full-sample mean AUC. The top-left pane

shows the results for the task of classifying users into the group “Household Size: 3 people”,

which has the lowest mean total sample AUC of 0.53. The low value for the total sample AUC

shows this is a difficult prediction task for which machine learning predictions are only slightly

better than random guessing. The top-right (“Age: 65 and above”) and bottom-left (“Have

Children”) panes show prediction tasks with average mean total sample AUCs of 0.68 and 0.76.

The bottom right pane shows the results for the classification task “Census Region: North

7Specifically, we randomly split the available data into five equal-sized folds which we will denote by f . We repeat
the training and prediction steps five times, using one fold as the test sample and the remaining four as the
training sample. By doing so, we obtain five prediction samples for each task and tracker to avoid relying on one
test sample in the assessment of prediction quality.

8Computational resources may be more important for training large language or image models based on unstruc-
tured data but the key to these large models’ success has been the vast accumulation of data.
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East”, which has the highest mean total sample AUC of 0.85 and can thus be considered the

simplest prediction task.

For difficult prediction tasks with a low mean AUC in the full sample, for instance “House-

hold Size: 3 people”, large trackers such as GFA do not have an advantage. Given that the

overall mean total sample AUC for this task is only slightly above 0.5, this result is intuitive:

If data are virtually useless to perform a specific prediction, it does not matter how much data

a firm has. Prediction quality will always remain low in this case. However, as the overall

prediction quality grows, the advantage of large trackers, who observe more websites, becomes

discernible. In the bottom panes of Figure 4, large trackers such as GFA achieve better results

than all other trackers.

Figure 4: Returns to data in predicting user profiles from web browsing history
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Note: The vertical axis denotes performance measured as AUC relative to a hypothetical tracker with access to
all tracked users’ browsing histories. The horizontal axis shows the number of tracked domains in 10,000s. The
largest tracker firms, Google, Facebook, Amazon, Cloudflare, Bootstrap, and Twitter are labeled on the plot.
Individual trackers belonging to Google (e.g. Doubleclick or Google Analytics) are colored in light orange. We
perform 5-fold cross-validation to assess each tracker’s prediction quality. The scatter dots represent the mean
relative AUC over these 5 repetitions. The vertical grey lines connect the mean relative AUC of the upper and
the lower folds.

Figure 5 shows the variation in prediction quality across trackers for all prediction tasks.

On the horizontal axis, all 39 tasks are sorted in increasing order of the mean total sample
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AUC. The vertical axis corresponds to the mean AUC achieved by the trackers.9 Prediction

tasks on the left side of the plot, i.e. those with a low mean AUC of the total sample, display

little variation in prediction quality. Moving to the right along the horizontal axis as predictions

become more accurate, the variation across trackers increases. For the tasks on the very right

of the plot, GFA perform markedly better than the smaller firms.

Figure 5: Distribution of AUC across trackers and prediction tasks
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6: Household Size: 4 people; 7: Age: 35-39; 8: Income: $60,000 – $74,999; 9: Age: 50-54; 10: Household Size: 2 people;
11: Income: $75,000 – $99,999; 12: Age: 30-34; 13: Age: 60-64; 14: Age: 25-29; 15: Income: $25,000 – $39,999;
16: Household Size: 5 or more people; 17: Income: $100,000 – $149,999; 18: Education: High school diploma or GED;
19: Income: $150,000 – $199,999; 20: Education: Associate degree; 21: Education: Some college but no degree; 22: Age: 21-24;
23: Income: Less than $25,000; 24: Racial Background: Other; 25: Age: 65 and over; 26: Household Size: 1 person;
27: Education: Bachelor's degree; 28: Country of Origin: Hispanic; 29: Racial Background: Caucasian; 30: Age: 18-20;
31: Income: $200,000+; 32: Racial Background: African American; 33: Children: Yes; 34: Racial Background: Asian;
35: Education: Unknown; 36: Census Region: North Central; 37: Census Region: South; 38: Census Region: West; 39: Census Region: North East

Note: This figure plots the distribution of prediction quality measured by the AUC across trackers, for
each prediction task. Prediction tasks are ordered along the horizontal axis by the mean AUC achieved
using the total sample. The sample is restricted to Google, Facebook, Amazon, and the subsequent 36
largest tracker firms. We exclude individual trackers operated by Google (e.g. Doubleclick or Google
Analytics) or Amazon (e.g. Amazon Cloudfront or Amazon Web Services) here.

5.2 Prediction returns to data

One focus of our analysis is the characterization of returns to data for prediction quality. If

returns to data decrease slowly, or not at all, then superior data access can represent a substan-

tial barrier to entry in the web tracking market. We have shown that large firms achieve better

prediction results for some demographic prediction tasks. However, the available observational

data are insufficient to fully assess the returns to data because we only observe cross-sectional

variation across trackers. Large firms such as GFA track almost all domains and all users in

the sample period. Even for smaller trackers, the variation in the number of domains and users

9We show only the combined trackers for Google and Amazon here to reduce noise. Figure 4 shows that prediction
quality for the individual trackers of these firms does not vary much.
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over time is limited. Yet, to identify the relationship between prediction quality and the two

data dimensions, we require tracker-specific variation over larger ranges of data inputs.

Therefore, we generate synthetic data that guarantees sufficient variation to assess global

returns to data. To generate the data, we vary the scale and scope of data on a 10-by-10 grid

for N and K. On the grid, we drop fractions of 0%, 10%, 20%, ..., 90% of randomly chosen

users and a tracker’s observed domains. We create one grid for each tracker and prediction

task. Appendix C provides an in-depth description of how we construct the simulated data and

a graphical illustration of the grid for all trackers and prediction tasks.

We then apply the approach described in Section 4 to the simulated rather than the obser-

vational data. Here, we train the LightGBM classification algorithm for every prediction task,

tracker, and grid point. We collect the AUC values, computed relative to the mean AUC using

the complete clickstream data, from all five folds of the cross-validated model in each iteration.

Collecting prediction qualities for all trackers and prediction tasks at all grid points provides a

new data set mapping the varying tracker-specific data into prediction qualities.

Figure 6 shows the prediction qualities over all trackers and grid points for the same four

different prediction tasks also displayed in figure 4. Prediction quality is plotted on the vertical

axis and the number of tracked users and domains are shown on the two axes spanning the

floor. In line with existing studies, we find globally decreasing returns to data (Bajari et al.,

2019; Peukert et al., 2023; Yoganarasimhan, 2020; Schaefer and Sapi, 2023). We observe these

decreasing returns both across and within trackers.
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Figure 6: Returns to data over the entire grid
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While we observe significant increases in prediction quality starting at low levels of tracked

users and domains, the relative AUC improves only slowly at higher levels, indicating rather

strong diminishing returns. This is even more true for the number of users than for the number

of domains, especially for tasks that are difficult to predict. Hence, even firms observing only a

small share of users’ browsing records may be able to predict users’ demographic characteristics

well. Large trackers such as Google and Doubleclick virtually always attain the same mean

AUC as a hypothetical tracker with access to all clickstream data.10

5.3 Data complementarities: combining clickstream and demographic data

We have established that trackers face decreasing returns to data – both in the number of

domains and users tracked – when predicting user characteristics based on users’ browsing

behavior. Yet, large digital platforms can also collect a variety of additional data on their own

10To systematically estimate the returns to data along both dimensions, we run polynomial regressions on our
prediction result data; see Appendix F.

15



users. For example, Meta observes detailed personal information for individuals who actively

use their Facebook or Instagram platforms.11 Likewise, Google observes personal information

in their search, maps, or e-mail services, and Amazon observes purchase preferences in its user

profiles.12 Because large platforms directly observe these data across the services they offer,

they can combine personal demographic information and off-platform browsing data to infer

additional missing personal information.

Motivated by this practice, we investigate the extent to which the large GFA trackers can

improve their predictive accuracy by combining web browsing data with additional and poten-

tially complementary data on demographic characteristics. To do so, we use the same algorithm

as in Section 5 but expand the data available to Google, Facebook, and Amazon with a subset

of each user’s demographic information.13 Specifically, for all prediction tasks of these three

trackers, we use all demographic variables as predictors excluding the user characteristic we aim

to predict. For instance, for the task of classifying users into the group “Age: 65 and over”,

we train and test the model based on the web browsing data and all demographic information

except the user’s age.

Repeating an analysis analogous to Section 5.1, Figure 7 shows the classification results

across trackers for all prediction tasks. The results are identical to Figure 5 for all trackers,

using the same clickstream data as before, except for GFA. These three platforms experience

large jumps in prediction quality across prediction tasks due to the combination of clickstream

data with demographic information in their predictive models. We estimate an average increase

in prediction quality, measured by the AUC, of 0.065 (10.17%) for these three firms across all

tasks.

Given our previous finding of diminishing returns to data, the significant increments in

prediction quality obtained by adding external demographic data have important implications.

Table 7 in Appendix F reports coefficients from linear regressions of prediction quality on the

scale and scope of data. The results in column (1) show that trackers can improve their AUC

on average by a maximum of 0.066 when increasing the number of tracked domains from 0

to 101,250, which is the maximum number of tracked domains beyond which, ceteris paribus,

returns start to decrease. This improvement is equivalent to the jump in prediction quality

experienced by GFA when combining external demographic information with their web browsing

11For instance, Meta asks users for their date of birth and uses this information for advertising pur-
poses: https://www.meta.com/en-gb/help/quest/articles/accounts/account-settings-and-management/why-we-
ask-for-your-birthday/

12Cyphers and Gebhart (2019) provide a detailed account of the various sources of information used by big tech
firms such as Google, Meta, and Amazon for tracking purposes.

13We use the LightGBM algorithm to minimize the binary logistic loss function and evaluate predictions using
5-fold cross-validation.
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Figure 7: Distribution of AUC across trackers and prediction tasks with additional data
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6: Household Size: 4 people; 7: Age: 35-39; 8: Income: $60,000 – $74,999; 9: Age: 50-54; 10: Household Size: 2 people;
11: Income: $75,000 – $99,999; 12: Age: 30-34; 13: Age: 60-64; 14: Age: 25-29; 15: Income: $25,000 – $39,999;
16: Household Size: 5 or more people; 17: Income: $100,000 – $149,999; 18: Education: High school diploma or GED;
19: Income: $150,000 – $199,999; 20: Education: Associate degree; 21: Education: Some college but no degree; 22: Age: 21-24;
23: Income: Less than $25,000; 24: Racial Background: Other; 25: Age: 65 and over; 26: Household Size: 1 person;
27: Education: Bachelor's degree; 28: Country of Origin: Hispanic; 29: Racial Background: Caucasian; 30: Age: 18-20;
31: Income: $200,000+; 32: Racial Background: African American; 33: Children: Yes; 34: Racial Background: Asian;
35: Education: Unknown; 36: Census Region: North Central; 37: Census Region: South; 38: Census Region: West; 39: Census Region: North East

Note: This figure plots the distribution of prediction quality measured by the AUC across trackers, for
each prediction task. We assume that Google, Facebook, and Amazon combine clickstream data with
demographic data for their predictions while all other trackers only use clickstream data. Prediction
tasks on the horizontal axis are sorted in increasing order of the mean AUC achieved using the total
tracking sample. The sample is restricted to Google, Facebook, Amazon, and the subsequent 36
largest tracker firms. We exclude individual trackers operated by Google (e.g. Doubleclick or Google
Analytics) or Amazon (e.g. Amazon Cloudfront or Amazon Web Services) here.

data. Thus, even if smaller firms significantly expand their tracking activity by collecting more

browsing data on domains and users, decreasing returns will prevent them from achieving the

same prediction quality as firms that can combine information from user profiles with clickstream

data.

6 Evaluating regulatory interventions

6.1 Ex-Ante: Data sharing obligations in the DMA

The DMA is a regulation by the European Union aimed at creating a fairer competitive land-

scape in digital markets. The DMA targets large online platforms who control access to certain

services or markets, and as of September 2023, the EU had identified six gatekeeper compa-

nies.14 The DMA aims to limit their power and ensure a level playing field for smaller firms.

Among several obligations, it requires the gatekeepers to share (certain) data that they collect

with other competitors, upon request.

14Alphabet, Amazon, Apple, ByteDance, Meta, and Microsoft.
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In this subsection, we perform a counterfactual analysis in which we assume all trackers

obtain access to the demographic information of their tracked users. This scenario could occur

if, for instance, Alphabet, identified as a gatekeeper under the DMA, was to be mandated to

share part of its user data with tracker firms competing on the market for targeted advertise-

ments. Following the procedure described in Section 5.3, we simulate this scenario by repeating

the prediction tasks for all 52 trackers while combining users’ demographic information to each

tracker’s available clickstream data.Figure 8 shows the resulting distribution of prediction qual-

ities across trackers.

Figure 8: Distribution of AUC across trackers and prediction tasks (everyone using additional
demographic data)
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12: Household Size: 2 people; 13: Income: $25,000 – $39,999; 14: Age: 25-29; 15: Income: $100,000 – $149,999;
16: Household Size: 4 people; 17: Education: Associate degree; 18: Age: 65 and over; 19: Education: Some college but no degree;
20: Age: 21-24; 21: Income: Less than $25,000; 22: Income: $150,000 – $199,999; 23: Household Size: 5 or more people;
24: Age: 18-20; 25: Education: High school diploma or GED; 26: Racial Background: Other; 27: Education: Bachelor's degree;
28: Income: $200,000+; 29: Country of Origin: Hispanic; 30: Racial Background: African American;
31: Racial Background: Caucasian; 32: Racial Background: Asian; 33: Census Region: North Central; 34: CensusRegion: South;
35: Education: Unknown; 36: Census Region: North East; 37: Census Region: West; 38: Household Size: 1 person; 39: Children: Yes

Note: This figure plots the distribution of prediction quality measured by the AUC across trackers,
for each prediction task. We assume that every tracker combines clickstream data with demographic
data for its predictions. Prediction tasks on the horizontal axis are sorted in increasing order of the
mean AUC achieved using the total tracking sample. The sample is restricted to Google, Facebook,
Amazon, and the subsequent 36 largest tracker firms. We exclude individual trackers operated by
Google (e.g. Doubleclick or Google Analytics) or Amazon (e.g. Amazon Cloudfront or Amazon Web
Services) here.

To more precisely quantify how prediction quality improves relative to a baseline in which

trackers do not have access to additional user data, we specify a linear regression model of the

form:

Yisfp = α+ β1demographicsp + γXisfp + εisfp, (1)

where the outcome variable Yisfp is the AUC for tracker i, prediction task s, fold f , and

prediction model p, which includes one prediction model with and one without additional demo-
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graphic data. The variable of interest, demographics is an indicator equal to one for predictions

based on clickstream data combined with demographic data and equal to zero for predictions

based on clickstream data only. The vector X includes fold, tracker, and prediction task fixed

effects.

From an antitrust perspective, an important question regarding data-sharing provisions is

whether such policies can reduce the distance between each tracker and the incumbent gatekeep-

ers. To explore how access to demographic data would impact trackers’ distance to Google – the

largest tracker in our sample – we specify the outcome in equation (1) as AUCisfp/AUCgooglesfp ,

the ratio between the AUCs of tracker i and Google for prediction task s, fold f , and prediction

model p, where Google is assumed to use both clickstream and demographic data for prediction.

The first column in Table 2 shows that combining external data with clickstream data cre-

ates sizable improvements in prediction quality across trackers. We estimate that, on average,

the AUC increases by .07 (or around 11%) when demographic data is added to the LightGBM

prediction models. The second column shows that providing non-GFA trackers with access to

demographic data significantly reduces the gap in prediction quality relative to Google, com-

pared to a world where non-GFA trackers only have access to clickstream data. More specifically,

competing tracker firms become 9.9 percentage points closer to Google’s prediction quality if

able to rely on demgraphic data, on average. These results suggest that the DMA’s data-sharing

requirements can reduce gatekeepers’ competitive advantage by improving prediction quality for

smaller competitors.

Table 2: Effect of data combination on prediction quality

VARIABLES AUC AUC relative to Google

Adding Demographic Data 0.07009*** 0.09880***
(0.00765) (0.00052)

Constant 0.63578*** 0.89003***
(0.00382) (0.00037)

Observations 20,280 14,040
R-squared 0.93 0.77
Tracker FE Yes Yes
Task FE Yes Yes
Fold FE Yes Yes
Cluster Task Task

Note: The unit of observation is at the tracker-task-fold-prediction model level in all regression models. The
dependent variable in column (1) is the in AUC and in column (2) is the AUC relative to Google’s. Robust
standard errors in parentheses. *** represent p<0.01.
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6.2 Ex-Post: GDPR-induced changes in tracking and prediction quality

In 2018, the European Commission introduced the GDPR to harmonize data protection law

and enforcement throughout the European Union. Under the GDPR, websites are held account-

able for privacy breaches, even if third-party technology is used to collect data, because both

websites and web technology providers act as so-called “joint controllers” of user data.15 Joint

controllership applies even if the website cannot control what data is collected by a tracker.

Furthermore, the GDPR drastically increased possible fines for privacy violations, which can

now reach €20 million or 4% of the total worldwide annual turnover, whichever is higher.16 As

a result, after the GDPR became effective on 25 May 2018, websites reduced their compliance

risks by reducing the number of third-party web technology providers they use (Peukert et al.,

2022).

In this subsection, we assess how prediction quality across web trackers changed after the

introduction of the GDPR. For this, we utilize the data from after the introduction of the GDPR

and the first 20 calendar weeks of 2018 before the GDPR became effective.17 Table 1 in Section

3 shows the reduction in tracking activity levels after the introduction of the GDPR. While the

number of visited domains remained relatively stable over the pre- and post-GDPR period, the

number of tracked domains decreased from 172,120 to 155,247 in our sample, which confirms

that the GDPR reduced tracking activity levels in line with previous research. We restrict the

sample to the 48 trackers that appear in both the pre- and post-GDPR periods and run the

machine learning prediction exercise described in Section 4. We then measure the change in

prediction qualities after the introduction of the GDPR using the linear regression model

Yisfpt = α+ β1postt + γXisft + εisfpt, (2)

where the outcome variable Y is the AUC for tracker i, prediction task s, fold f , and

prediction model p in period t defined as either pre- or post-GDPR. The variable of interest,

post is an indicator equal to one for predictions based on data of the post-GDPR period. The

vector X includes tracker, prediction task, and fold fixed effects.

Table 3 shows the results of regressions on the full sample as well as the sub-samples of GFA

and non-GFA trackers. In the first column, overall prediction quality decreases slightly by -

0.0023 with GDPR. Columns 2 and 3 show the prediction quality of non-GFA trackers decreases

significantly less compared to GFA trackers, if all trackers used prediction models based only

15See GDPR Art. 26.
16See GDPR Art. 83 (5) and (6).
17GDPR came into force on 25 May 2018, which lies in the 21st calendar week of 2018.
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on clickstream data. However, if GFA can also use demographic features in their prediction

models, the decrease is attenuated, as shown in the last two columns. Interestingly, in this

case, prediction quality for GFA trackers decreases less than for the non-GFA trackers that do

not have access to demographic data. Finally, in a counterfactual scenario in which all trackers

have access to demographic variables for their prediction models, as described in Section 6.1,

the decrease in prediction quality is the smallest. Hence, access to data that is more difficult to

obtain for smaller trackers at the same time appears the most valuable for these small trackers.

Table 3: Prediction quality and the introduction of GDPR

Clickstream data Clickstream and demographic data

All Trackers Non-GFA GFA Non-GFA GFA

Post-GDPR -0.00233*** -0.00199*** -0.00309*** -0.00060*** -0.00139***
(0.00014) (0.00015) (0.00020) (0.00012) (0.00016)

Constant 0.63888*** 0.63495*** 0.64752*** 0.70485*** 0.71213***
(0.00010) (0.00010) (0.00014) (0.00008) (0.00012)

Observations 18,720 12,870 5,850 12,870 5,850
R-squared 0.99 0.99 0.99 0.99 0.996
Tracker FE Yes Yes Yes Yes Yes
Task FE Yes Yes Yes Yes Yes
Fold FE Yes Yes Yes Yes Yes

Note: The unit of observation is on a tracker-task-fold-period level in all regression models. The sample is
restricted to the 48 trackers that appear in both the pre- and post-GDPR periods. The dependent variable is
the AUC. GFA trackers include Google, Facebook, and Amazon, as well as the individual trackers belonging to
Google or Amazon (see Table 5). Robust standard errors in parentheses. *** represent p<0.01.

There can be multiple explanations for why some trackers, especially larger ones such as

GFA, are more strongly affected by the introduction of the GDPR than others. To shed light

on potential determinants, we assess the association between the change in prediction quality

(AUC) pre- and post-GDPR and possible observable factors using a regression analysis at the

tracker-task-fold level. The results of this analysis reported in Table 4 show that trackers that

trace fewer domains post-GDPR have a greater decrease in prediction quality. The coefficient

on the magnitude of a tracker’s prediction quality before the GDPR is negative, large, and

significant. This is driven by the nature of binary classification, where the AUC bounded from

below at 0.5. Hence, for trackers with a high AUC before GDPR prediction quality can drop

much more than for those with low AUC values before AUC. Finally, we find that trackers

with an EU top-level tracker domain and the number of tracked domains from an EU country,

which exposes trackers more to GDPR enforcement, are associated with a stronger decrease in

prediction quality after the introduction of GDPR, as one would expect.
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Table 4: Potential factors behind changes in prediction quality with GDPR

(1) (2) (3) (4)

Change in Number of Domains 0.00103***
(0.00010)

Pre-GDPR AUC -0.32892***
(0.01127)

Number of EU Top-Level tracker Domains -0.00009***
(0.00002)

Number of tracked EU Domains (1,000) -0.00048***
(0.00003)

Constant -0.00032 0.20780*** -0.00225*** 0.00021
(0.00023) (0.00721) (0.00009) (0.00021)

Observations 9,360 9,360 9,360 9,360
R-squared 0.46 0.62 0.45 0.46
Tracker FE Yes
Task FE Yes Yes Yes Yes
Fold FE Yes Yes Yes Yes

Note: The unit of observation is on a tracker-task-fold level in all regression models. The sample is restricted to
the 48 trackers that appear in both the pre- and post-GDPR periods. The dependent variable in all regression
models is the change in AUC between the post- and pre-GDPR period. Robust standard errors in parentheses.
*** represent p<0.01.

7 Conclusion

In this paper, we characterize the relationship between the prediction quality of consumer

profiling and the data web tracking firms can use in their prediction models. Our results indicate

a strong variation in prediction quality across prediction tasks. For some demographic groups,

web browsing data exhibits only little predictive power. In these instances, larger firms benefit

only marginally, if at all, from accessing richer web browsing data. However, for prediction

tasks where web browsing data yields higher prediction quality, larger firms with access to more

data have an advantage over smaller firms with less data.

Overall, we find decreasing returns to data on the number of users and tracked websites

across and within tracker firms. While this result mitigates competition concerns at first glance,

we document that combining web browsing data with additional consumer data, represented

here by the example of a subset of demographic information, yields substantial increases in

prediction quality. The three largest tracker firms Google, Facebook, and Amazon operate

digital ecosystems that enable them to combine web browsing data with further user-level

information from multiple sources. We find an average increase in prediction quality, measured

by AUC, of 0.065 (10.17%) for these three firms across all subgroups when we enrich their

prediction model with demographics. This is comparable to the increase a tracker would obtain,

on average, when tracking over 100,000 additional domains. In this light, the decreasing returns
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to data may actually have prevented smaller web tracking firms from ever catching up with GFA.

The results of our study have significant implications for policymakers, particularly in the

context of data privacy and competition regulation. We analyze the impact of regulatory inter-

ventions on the prediction quality and competitive landscape in the web tracking market. Our

findings suggest that regulatory measures like the GDPR, while enhancing consumer privacy,

may inadvertently consolidate the market power of large tech firms. By reducing the amount

of trackable data, the GDPR disproportionately affects smaller firms that cannot compensate

for these data losses with complementary demographic data. While GFA incurs more severe

losses in prediction quality compared to the other firms when only using web browsing data, this

finding is reversed in a scenario where GFA can combine data and the other firms cannot. Our

analysis also indicates that data-sharing mandates, such as those included in the DMA, could

mitigate the competitive disadvantages faced by smaller firms. By requiring large incumbents

to share certain data, these provisions could help foster a more competitive and dynamic market

environment. Our simulation results show that access to demographic data can significantly

narrow the gap in prediction quality between smaller trackers and large tech firms like Google.

While data-sharing provisions may be a solution to level the playing field in markets that

rely on consumer profiles for targeted services, they may come at a cost to consumer privacy.

Policymakers need to consider this trade-off when designing privacy and antitrust policies, for

example by adopting a privacy-preserving approach to data access. Indeed, the DMA requires

gatekeepers to publish general terms and conditions for access on fair, reasonable and non-

discriminatory terms, including dispute resolution mechanisms. These terms should protect

users’ privacy and prevent misuse of personal data.

23



References

Aguiar, L., Claussen, J., and Peukert, C. (2018). “Catch me if you can: Effectiveness and

consequences of online copyright enforcement.” Information Systems Research, 29 (3), 656–

678. 8
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A Tracker descriptives

Table 5: Tracker descriptive statistics

Tracker Users Domains Owned by Google Owned by
Amazon

Google* 75,149 155,160 X .
Google Analytics 75,138 153,387 X .
Googleapis.Com 75,144 151,971 X .
Gstatic 75,121 150,713 X .
Google (Individual Tracker) 74,891 148,602 X .
Doubleclick 75,109 148,395 X .
Google Tag Manager 74,855 137,142 X .
Facebook 75,032 133,285 . .
Google Syndication 74,410 104,920 X .
Amazon* 74,511 97,011 . X
Google Adservices 74,106 93,757 X .
Youtube 74,597 92,624 X .
Cloudflare 74,374 90,340 . .
Bootstrap 74,363 86,153 . .
Twitter 74,381 77,060 . .
Amazon Cloudfront 73,642 68,373 . X
Appnexus 73,946 68,184 . .
Rubicon 73,837 63,511 . .
Yahoo 74,124 63,169 . .
Tradedesk 74,082 63,065 . .
Adobe Audience Manager 73,880 61,844 . .
Openx 73,725 61,341 . .
Google Photos 74,260 61,167 X .
Pubmatic 72,853 59,420 . .
Wordpress Stats 73,175 58,077 . .
Jquery 73,108 57,995 . .
Amazon Web Services 72,892 56,582 . X
Addthis 73,303 56,248 . .
Index Exchange 72,732 55,801 . .
Yandex 73,232 53,885 . .
Quantcast 73,421 52,744 . .
Digicert Trust Seal 73,895 50,274 . .
Bidswitch 73,347 47,800 . .
Jsdelivr 73,400 47,651 . .
Liveramp 72,809 46,547 . .
Criteo 72,977 45,841 . .
Advertising.Com 73,383 44,469 . .
Drawbridge 73,341 43,882 . .
Bluekai 72,710 42,326 . .
Mediamath 73,275 42,138 . .
Aggregate Knowledge 72,865 41,901 . .
Hotjar 72,122 41,870 . .
Amazon Associates 73,295 41,022 . X
New Relic 73,376 40,967 . .
Fontawesome Com 73,350 39,995 . .
Scorecard Research Beacon 73,287 39,882 . .
Media Innovation Group 72,747 38,924 . .
Lotame 71,348 38,397 . .
Blogspot Com 72,466 37,031 . .
Bing Ads 73,422 36,422 . .
Exelate 71,871 35,786 . .
Typekit By Adobe 72,697 34,587 . .

Note: Trackers marked with a star (*) consist of multiple individual trackers.
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B Subgroup descriptives

Table 6: Prediction task descriptive statistics

Prediction task Mean
Y

(Mean)

Mean
Y

(Sd)

AUC
(Mean)

AUC
(Sd)

AUC
(Min)

AUC
(Max)

Mean
AUC
from
entire
Sam-
ple

Age: 18–20 .03 0 .66 .04 .42 .78 .71
Age: 21–24 .04 0 .62 .03 .45 .71 .65
Age: 25–29 .06 0 .57 .02 .45 .64 .59
Age: 30–34 .07 0 .55 .02 .43 .63 .57
Age: 35–39 .08 0 .54 .02 .43 .63 .56
Age: 40–44 .1 0 .53 .02 .43 .6 .55
Age: 45–49 .14 0 .54 .01 .45 .6 .55
Age: 50–54 .15 0 .54 .01 .46 .6 .56
Age: 55–59 .11 0 .52 .02 .42 .6 .53
Age: 60–64 .08 0 .55 .03 .41 .62 .59
Age: 65 and over .15 0 .64 .03 .5 .69 .68
Census Region: North Central .2 0 .66 .07 .45 .82 .81
Census Region: North East .18 0 .7 .07 .47 .86 .85
Census Region: South .41 0 .68 .06 .5 .83 .82
Census Region: West .21 0 .71 .07 .47 .85 .84
Children: Yes .56 .01 .71 .03 .55 .77 .76
Country of Origin: Hispanic .19 0 .62 .04 .46 .7 .69
Education: Associate degree .21 0 .58 .02 .46 .63 .62
Education: Bachelor’s degree .14 0 .64 .03 .48 .71 .68
Education: High school diploma or GED .03 0 .55 .04 .36 .67 .61
Education: Some college but no degree .2 0 .59 .02 .46 .64 .63
Education: Unknown .4 .01 .73 .02 .62 .77 .76
Household Size: 1 person .19 0 .64 .03 .51 .7 .68
Household Size: 2 people .33 0 .54 .01 .47 .59 .56
Household Size: 3 people .17 0 .51 .01 .42 .57 .53
Household Size: 4 people .13 0 .53 .02 .43 .59 .55
Household Size: 5 or more people .17 0 .56 .02 .45 .61 .59
Income: $100,000 – $149,999 .11 0 .57 .02 .43 .62 .6
Income: $150,000 – $199,999 .04 0 .56 .04 .37 .68 .62
Income: $200,000+ .05 0 .64 .04 .45 .74 .71
Income: $25,000 – $39,999 .18 0 .57 .01 .49 .63 .59
Income: $40,000 – $59,999 .16 0 .53 .01 .45 .59 .55
Income: $60,000 – $74,999 .08 0 .52 .02 .38 .63 .56
Income: $75,000 – $99,999 .1 0 .53 .02 .41 .59 .56
Income: Less than $25,000 .28 0 .63 .02 .52 .68 .67
Racial Background: African American .21 0 .69 .03 .56 .75 .74
Racial Background: Asian .06 0 .68 .05 .45 .78 .76
Racial Background: Caucasian .56 0 .66 .02 .54 .71 .7
Racial Background: Other .18 0 .64 .02 .5 .69 .68

Total Observations 1,014,000
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C Generating Additional Data using a Grid

To measure the relationship between prediction quality and the two data dimensions, i.e. the

number of observed users and the extent of browsing observed per user, we use counterfactual

simulations at the tracker-level. For each tracker, given one prediction task, we vary the scale

and scope of data on a 10-by-10 grid for N and K. Doing so, we respectively drop fractions of

0%, 10%, 20%, ..., 90% of randomly chosen users and domains for each tracker in our sample.

Figure 9 displays the variation in the user and domain dimensions obtained through our grid.

Compared to the factual distribution of users and domains across trackers shown in figure 3,

this simulation creates a much richer dataset in terms of variation in both the user and domain

dimensions.

Figure 9: User - Domains distribution across trackers over the entire grid
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For every prediction task, every tracker and at every gridpoint, we train our LightGBM

classification model, as described in the previous subsection. In each iteration, we collect the

AUCs from all 5-folds of the cross-validated model. We evaluate these AUCs relative to the

mean AUC obtained from the total tracked clickstream data for the respective prediction task.

By collecting the achieved prediction quality for all trackers, at all grid points and all prediction

tasks, we construct a new data set mapping the varying tracker-specific amount of data into

prediction quality.

Table 6 reports summary statistics of this data set. The first column “Subgroup” indicates

the prediction task, while the second and third columns indicate the prevalence and its standard

deviation of that subgroup. Columns 4-7 display summary statistics about the AUC achieved by
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our machine learning algorithm, across trackers, gridpoints and folds. The last column displays

the mean AUC obtained when using the entire clickstream data (mean total sample AUC). Note

that the maximum AUC reported for a tracker (column 7) can be higher than the mean AUC

from the entire sample (column 8), since the we capture the fold with the highest out-of-sample

AUCs and compare it to the mean AUC (i.e. the AUC across the 5-folds) of the entire sample.
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E 3D Plots
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F Regression Analysis with Simulated Data

To systematically estimate the returns to data along both dimensions, we run a polynomial

regression based on our prediction results. Our baseline specification for tracker i, prediction

task s, grid point g, and fold f is given by:

AUCisgf = α+ β1nisgf + β2n
2
isgf + β3kisgf + β4k

2
isgf + γXisgf + εisgf

where n denotes the number of observed users and k denotes the number of observed domains

in firm i’s prediction model. The outcome variable AUC corresponds to the area under the

ROC curve, our measure of prediction quality. X captures control variables, such as the mean

and squared mean Y,18 as well as dummy variables for each fold. We estimate this model on

the entire sample, i.e. across trackers, and for largest individual tracker firms, exploiting the

18Mean Y corresponds to the prevalence of the relevant subgroup in a prediction task.
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artifical within-tracker variance in the number of users and domains generated through our grid

described in section C.

Table 7: Regression analysis with AUC as outcome variable

(1) (2) (3) (4) (5) (6)
VARIABLES All Trackers Google Facebook Amazon Bootstrap Cloudflare

Users (in 1,000s) 0.00127*** 0.00109*** 0.00122*** 0.00123*** 0.00141*** 0.00130***
(0.00006) (0.00006) (0.00006) (0.00006) (0.00006) (0.00006)

Users Squared -0.00001*** -0.00001*** -0.00001*** -0.00001*** -0.00001*** -0.00001***
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Domains (in 10,000s) 0.01296*** 0.00756*** 0.00921*** 0.01232*** 0.01194*** 0.01322***
(0.00026) (0.00022) (0.00028) (0.00035) (0.00038) (0.00039)

Domains Squared -0.00064*** -0.00027*** -0.00039*** -0.00071*** -0.00072*** -0.00082***
(0.00002) (0.00001) (0.00002) (0.00004) (0.00004) (0.00004)

Observations 1,014,000 19,500 19,500 19,500 19,500 19,500
R-squared 0.90815 0.93361 0.93648 0.92837 0.92780 0.93203
Task FE Yes Yes Yes Yes Yes Yes
Tracker FE Yes
Fold FE Yes Yes Yes Yes Yes Yes
Cluster Gridpoint-Fold Gridpoint-Fold Gridpoint-Fold Gridpoint-Fold Gridpoint-Fold Gridpoint-Fold

Standard errors in parentheses are clustered at the grid point-fold level
*** p<0.01, ** p<0.05, * p<0.1

Table 7 reports the regression results from our main specification for all trackers pooled

together (column 1), ii) Google (column 2), as well as the next 4 largest tracker firms in terms

of observed domains (columns 3-6). The marginal returns to data, in the user and domain

dimensions are respectively given by the partial derivatives

∂AUC

∂n
= β1 + 2β2n , and

∂AUC

∂k
= β3 + 2β4k

Throughout across and within trackers, we observe decreasing returns to data in both dimen-

sions, as indicated by the positive “Users” and “Domains” coefficients (β1 and β2) but negative

squared terms (β3 and β4).
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