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Abstract

We analyze how machine learning predictions may improve antibiotic prescribing in the

context of the global health policy challenge of increasing antibiotic resistance. Estimating

a binary antibiotic treatment choice model, we find variation in the skill to diagnose bacte-

rial urinary tract infections and in how general practitioners trade off the expected cost of

resistance against antibiotic curative benefits. In counterfactual analyses we find that pro-

viding machine learning predictions of bacterial infections to physicians increases prescribing

efficiency. However, to achieve the policy objective of reducing antibiotic prescribing, physi-

cians must also be incentivized. Our results highlight the potential misalignment of social

and heterogeneous individual objectives in utilizing machine learning for prediction policy

problems.
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1 Introduction

Antibiotic resistant infections are among the leading causes of death worldwide. Every year,

more people die due to antibiotic resistance than due to either breast cancer, HIV, malaria, or

opioid overdose.1 In 2019, an estimated 4.95 million deaths have been associated with antibiotic

resistance, with an estimated 1.27 million directly attributable deaths (Laxminarayan 2022;

Murray et al. 2022).2

Antibiotics are vital pharmaceuticals for treating bacterial infections but their use is also

considered the main driver of antibiotic resistance (Costelloe et al. 2010; WHO 2014; Adda

2020). Hence, treatment decisions must solve a trade off between patients’ expected sickness cost

under diagnostic uncertainty and the external cost of increased antibiotic resistance.3 Policies

have focused mostly on affecting how physicians weigh the external cost, for example by making

their prescribing intensities salient (Hallsworth et al. 2016). When physicians make decisions

under uncertainty, diagnostic skill becomes an important determinant of treatment outcomes and

policies focusing only on incentives may lead to large inefficiencies (Mullainathan and Obermeyer

2022). To design policy interventions, it is crucial to quantify to what extent antibiotic misuse

is driven by diagnostic uncertainty as opposed to physicians’ socially inefficient trade-offs.

In this paper, we view the challenge of reducing antibiotic use through the lens of a prediction

policy problem, as in Kleinberg et al. (2015, 2018), where large-scale data and machine learning

may help reduce patient-level diagnostic uncertainty and improve treatment outcomes. In high-

risk situations, like medical decision-making, evaluating the potential effects of interventions

ex ante is important. Yet, such an evaluation is difficult when human agents’ information and

preferences are unknown and heterogeneous. Prior evaluations have relied on quasi-experimental

designs with crucial monotonicity assumptions implying homogeneous skill or preferences (Currie

and MacLeod 2017; Kleinberg et al. 2018). We propose a structural model of physician prescrib-

ing decisions that accommodates flexible heterogeneity in physicians’ diagnostic information and

payoffs, thus providing a framework for counterfactual policy evaluation using machine learning

predictions.

Specifically, we study antibiotic treatment decisions for 36,972 initial urinary tract infection

(UTI) consultations in 175 primary care clinics in Denmark. UTI are one of the most common
1See Murray et al. (2022) for estimates on the toll of antibiotic resistance and WHO Malaria

Fact Sheet (https://www.who.int/news-room/fact-sheets/detail/malaria), WHO Breast Cancer Fact Sheet
(https://www.who.int/news-room/fact-sheets/detail/breast-cancer), and WHO Opioid Overdose Fact Sheet
(https://www.who.int/news-room/fact-sheets/detail/opioid-overdose), accessed on 30 March 2022.

2In the US, 2.8 million antibiotic-resistant infections result in 35,000 deaths, $20 billion in health care costs,
and $35 billion in lost productivity per year (CDC 2013, 2019; Kwon and Powderly 2021).

3Improved diagnostics are a key factor in improving antibiotic use but investment in diagnostic technologies
is lacking, see WHO Antimicrobial Resistance Fact Sheet (accessed on 30 March 2022).

1

https://www.who.int/news-room/fact-sheets/detail/malaria
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://www.who.int/news-room/fact-sheets/detail/opioid-overdose
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance


classes of bacterial infections, and primary care accounts for 75 percent of prescriptions in

Denmark (Danish Ministry of Health 2017).4 Due to the acute nature of UTI, its symptomatic

burden and risk of complications, immediate antibiotic therapy is recommended.5 Therefore,

physicians make treatment decisions prior to observing definitive test results, which become

available after several days.6

This delay poses a challenge for physicians but provides us with a microscope for measuring

heterogeneous physician skill and payoffs to perform counterfactual evaluations.7 Ribers and

Ullrich (2023) have analyzed the potential of machine learning in this setting following simple

threshold-based policies without uncovering the mechanisms of decision improvements. We make

use of this unique setting to quantify physician error conditional on testing, its variation across

clinics, and how a non-targeted policy using machine learning predictions affects prescription

outcomes. Combining diagnostic outcomes from microbiological laboratories with administrative

data on individual patients, we see physicians prescribe an antibiotic in 39 percent of initial

consultations, which corresponds closely to the mean rate of bacterial test results. However,

bacterial test results and antibiotic prescribing decisions do not match for a large share of

patients, with significant variation across physicians.

To analyze physician decisions, we first gather observable information at the time of initial

consultation to predict the binary test outcome, whether significant bacteria are present or not,

using machine learning following Ribers and Ullrich (2023). We then incorporate patient-specific

machine learning predictions in a binary choice model proposed by Chan et al. (2022), which fol-

lows two steps physicians take in treating patients. First, assessing the risk of a bacterial cause

of infection depends on diagnostic skill. Physicians observe patient characteristics and medi-

cal histories, amenable to machine learning methods, which they can relate to the prevalence

of bacterial UTI. Physicians also receive a signal from clinical assessment including patients’

symptom descriptions and point-of-care tests which we do not observe. Physicians may use
4Foxman (2002) reports 50 percent of women contract a UTI at least once in their lifetime. In the US, yearly

UTI-related health care costs, including workplace absences, are estimated at $3.5 billion (Flores-Mireles et al.
2015). In Denmark, 10 percent of all women have received antibiotic treatment for UTI (Bjerrum and Lindbæk
2015). In Europe, primary care accounts for 90 percent of all antibiotic prescriptions (Llor and Bjerrum 2014).

5For UTI, patients often seek medical attention when symptoms are already advanced, increasing the urgency
to treat. The estimated short term cost of delaying treatment are six symptomatic days, including 2.4 days
of restricted activity (Foxman 2002). In 76 percent of community-acquired UTI patients, symptoms persist
without treatment (Ferry et al. 2004). Without treatment, natural progression of an infection can often lead to
hospitalization. In an evidence review, Grigoryan et al. (2014) conclude that immediate antimicrobial therapy is
recommended for bacterial UTI.

6In many common situations in health care, diagnostic results are delayed or unavailable but delaying treat-
ment decisions carries important costs (Cassidy and Manski 2019; Manski 2021); for example, in biopsies for
malignant tumors, testing for tuberculosis, or testing for SARS-CoV-2 virus. In these situations, machine learn-
ing may provide opportunities for earlier access to valuable diagnostic information.

7This feature has been used in the medical literature and related work in Yelin et al. (2019), Kanjilal et al.
(2020), Huang et al. (2022), and Ribers and Ullrich (2023).
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both sources of diagnostic information to form beliefs about a patient’s sickness state. Second,

given their assessment, physicians decide whether to prescribe an antibiotic by weighing pa-

tients’ expected sickness cost while waiting for diagnostic certainty against the cost of increased

antibiotic resistance.

Estimating the model, we find significant heterogeneity in skill and payoffs across clinics.

Notably, we find clinical diagnostic skill is negatively correlated with physician age and positively

associated with the extent of point-of-care testing. In counterfactual policy evaluations, we

compare outcomes of a simple threshold-based decision rule with outcomes generated by the

model of payoff-maximizing physicians. Improvements induced by the threshold-based decision

rule, a reduction of 8.9 percent in prescribing and 22.7 percent in overprescribing, are not

only due to diagnostic information generated using machine learning. They are also driven by

imposing payoff weights which differ from estimated physician preferences. To achieve reductions

in antibiotic prescribing, physicians need to be incentivized in addition to receiving improved

diagnostic information.

The best policy for a social planner depends on her weight on the antibiotic resistance

externality. If the social planner’s weight on the externality exceeds the mean physicians’ weight,

incentivizing physicians to reduce prescribing is necessary to maximize social welfare increases.

Yet, incentivizing physicians without improving diagnostic information leads to undertreatment

and potential welfare losses. We conclude that the improvement of diagnostic information and

incentives to reduce prescribing should be seen as complementary policy tools.

The remainder of the paper is organized as follows. Section 2 places our contribution in the

existing literature. Section 3 presents the institutional background and data. Section 4 develops

the model of physician prescription choice and Section 5 describes the empirical analysis. Section

6 presents the estimation results, Section 7 describes counterfactual policy evaluations, and

Section 8 shows robustness checks. Section 9 concludes.

2 Prior literature

We bridge two literatures by focusing on physician heterogeneity in assessing the potential of

machine learning predictions to help reduce antibiotic prescribing. One investigates ex ante the

potential of machine learning to help achieve varying policy objectives. The other identifies

heterogeneity in skill and preferences as sources of observed variation in health care provision.

A growing literature has evaluated prediction policy problems by replacing observed human

decisions with threshold rules based on prediction-based rankings, assuming decision makers

follow these perfectly (Kang et al. 2013; Bayati et al. 2014; Kleinberg et al. 2015; Chalfin et al.
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2016; Kleinberg et al. 2018; Andini et al. 2018; Yelin et al. 2019; Hastings et al. 2020; Dobbie et al.

2021; Mullainathan and Obermeyer 2022). The literature identifying supplier-driven variation

in health care provision as well as potential drivers of this variation is also large (Chandra and

Staiger 2007; Epstein and Nicholson 2009; Chandra et al. 2011; Skinner 2011; Finkelstein et al.

2016; Currie et al. 2016; Abaluck et al. 2016; Currie and MacLeod 2017; Abaluck et al. 2020).

In both these literatures, empirical designs often rely on assuming homogeneity in either skill

or preferences. Chan et al. (2022) discuss the use of restrictive homogeneity assumptions and

propose a framework to identify both skill and preferences as drivers of practice variation.

Machine learning predictions may improve decisions by augmenting or replacing skill, while

facilitating decision rules that may not be aligned with individual decision makers’ objectives

(Agrawal et al. 2018; Cowgill and Stevenson 2020). Hence, an evaluation of prediction-based

policies needs to take skill and preferences as determinants of decisions into account. Huang and

Ullrich (2023) and Ribers and Ullrich (2023) find indicative, model-free evidence that variation

in antibiotic treatment quality may be related to variation in diagnostic information. In high

risk settings such as health care, experimental work on the interplay of machine learning predic-

tions and human skill is difficult and rare, for example Agarwal et al. (2023). To evaluate the

potential improvements of prediction-based policies over human decisions in the treatment of

UTI ex ante using counterfactual policy evaluation, we estimate a structural model of treatment

decisions to measure variation in payoffs and two-dimensional skill, separated into observable

and unobservable information, across physicians.8

Finally, we contribute to the literature exploring demand side policies aimed at curbing an-

tibiotic resistance. This literature includes Laxminarayan et al. (2013) on prescription surveil-

lance and stewardship programs, Bennett et al. (2015) on general practitioner competition in

Taiwan, Currie et al. (2014) and Das et al. (2016) on financial incentives for physicians in China

and India, Kwon and Jun (2015) on peer effects in Korea, Hallsworth et al. (2016) on commu-

nication of social norms in the UK, McAdams et al. (2019) and McAdams (2021) on optimal

targeting of antibiotics, and Dubois and Gokkoca (2023) on the relevance of antibiotic resistance

information for the choice of antibiotic.
8Rambachan (2022) proposes a non-parametric framework to identify human prediction quality from obser-

vational data. Our parametric model provides a tractable way to separate the two dimensions of skill at the
clinic-level, which is essential for counterfactual evaluations.
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3 Health care context and data

3.1 General practice in Denmark

Denmark has several regulations that impact decision making in primary care. General practi-

tioners act as the primary gatekeepers in a universal and tax financed single payer health care

system. Every person living in Denmark is assigned to a general practitioner, who needs to be

consulted for any primary care needs, by a list-system within a fixed geographic radius around

the home address. Hence, short-term ‘shopping’ for antibiotic prescriptions is generally not

possible. General practitioners work as privately owned businesses but all service fees are col-

lectively negotiated and fixed between the national union of general practitioners and the public

health authority. The majority of clinics in general practice are single-physician establishments.

Physicians do not generate earnings by prescribing drugs to patients who have to purchase

their prescriptions from local pharmacies. General practitioners are responsible for prescribing

approximately 75 percent of the human consumed systemic antibiotics in Denmark (Danish

Ministry of Health 2017). Pharmacies earn a fixed fee per processed prescription regardless of

price or other drug attributes, for example branded versus generic drugs. Prescription drugs are

subsidized but patients co-pay a fraction of the list price. The Danish market for prescription

drugs is highly regulated resulting in low and uniform prices for antibiotics nationwide, about

100 Danish Kroner (15 US Dollars) per complete treatment.

3.2 Diagnosis and treatment of UTI

UTI are one of the most common types of bacterial infections and, hence, a leading cause for

antibiotic use in primary care (Grigoryan et al. 2014; Gupta et al. 2017). UTIs occur when

bacteria infect the urinary tract, the bladder, or kidneys. Without treatment, they can lead

to debilitating symptoms, at the extreme including sepsis and death. In the US alone, The

healthcare system bears an annual burden of approximately $1.6-3.5 billion due to community-

acquired UTI. (Foxman 2002; Flores-Mireles et al. 2015). Once a diagnosis is established, clinical

guidelines recommend the use of antibiotics.9

Foxman (2002) documents that almost half of all women contract at least one UTI during

their lifetime. Numerous other groups in the population face an elevated UTI risk, including

children, the elderly, and those with medical conditions like diabetes, weakened immune systems,

or underlying urological abnormalities (Foxman 2002). Many of these groups can be identified
9See Medicinrådets behandlingsvejledning vedrørende urinvejsinfektioner (https://medicinraadet.dk/anbefalinger-

og-vejledninger/behandlingsvejledninger/urinvejsinfektioner-uvi) or Urinary Tract Infections
(https://www.mayoclinic.org/diseases-conditions/urinary-tract-infection/symptoms-causes/syc-20353447)
by the Cleveland Clinic, accessed 11/2/2022.
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in observable data by personal attributes such as age and gender, or by observing past diagnoses

and health care utilization.

Medical attention is required for UTI symptoms, which encompass discomfort, pain, urinary

frequency, urgency, and new-onset incontinence. Signs of a systemic infection, including fever,

shivering, or overall illness, may also occur. Attributing these symptoms to a UTI can be

challenging, as they can also be linked to other conditions such as sexually transmitted urethritis

or vaginitis, early pyelonephritis, noninfectious urethritis, overactive bladder, bladder or kidney

stones, benign prostatic hyperplasia, or a bladder tumor (Wilson and Gaido 2004; Gupta et al.

2017; Nik-Ahd et al. 2018; Holm et al. 2021). Sometimes, fungi or viruses can also cause UTI.

Importantly, encoding these symptoms systematically is difficult. For instance, assessing “pain”

necessitates contextual elicitation and judgement regarding its nature, severity, chronology, and

location. Beyond symptom assessment, by speaking to patients physicians may obtain contextual

information, including behavioral factors.

At a consultation, diagnostic information can be obtained by point-of-care testing, first and

foremost urinary dipstick and microscopic analysis. These diagnostics may exhibit very low

specificity, the true negative rate, and sensitivity, the true positive rate, well below 0.5 (Devillé

et al. 2004; Wilson and Gaido 2004; Chu and Lowder 2018). To obtain a reliable assessment

of the true infection state, urine samples can be analyzed at a specialized hospital laboratory.

These laboratories offer the gold standard diagnosis for UTI with high accuracy and minimal

reliance on human judgment but require about three days to obtain results (Schmiemann et al.

2010). This test can be used to confirm treatment decisions ex post, ensure full information is

available to administer optimal treatment later, or provide antibiotic resistance information.

3.3 Microbiological laboratory test data

Individual-level clinical microbiological laboratory test results comprise the central data set of

our analysis. We acquired clinical microbiological laboratory test results from Herlev hospital

and Hvidovre hospital, two major hospitals in Denmark’s capital region covering a catchment

area of roughly 1.7 million inhabitants, nearly one third of the Danish population, for the

period of January 2010 to December 2012. The laboratory data provide information on whether

significant bacteria are found, the bacterial species, and an antibiotic resistance profile when

bacteria are detected in a patient sample. In addition, patient and clinic identifiers as well as

information on the microbiological sample type, the test acquisition date, sample arrival date at

the laboratory, and test response date are provided. A total of 2,579,617 microbiological samples

are observed including samples sent in from general practitioners and hospitals.
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3.4 Administrative data

The administrative data provided by Statistics Denmark cover the entire population of Denmark

between January 1, 2002, and December 31, 2012. For each person, we observe a comprehensive

set of socioeconomic and demographic variables, the complete prescription history of systemic

antibiotics (Lægemiddeldatabasen), hospitalizations (Landspatientregisteret), and general practi-

tioner insurance claims (Sygesikringsregisteret).10 All population-level administrative data can

be linked using patients’ personal identifiers and general practitioners’ clinic license numbers.

Household member identifiers allow us to also link administrative and laboratory data of pa-

tients’ family members.

The demographic data include gender, age, education, occupation, income, marriage and

family status, home municipality, immigration status, and place of origin. The data on systemic

antibiotic prescriptions contain the date of purchase, patient and prescribing clinic identifiers,

anatomical therapeutic chemical drug classification, drug name, price, indication of use, pur-

chased package size, and defined daily dose.11 The hospitalization data comprise all patient

contacts with hospitals including admission and discharge dates, procedures performed, type of

hospitalization, primary and secondary diagnoses, and the number of total bed days. The insur-

ance claims data cover all general practitioner clinic services provided to the Danish population

of patients, including clinic and patient identifiers, the week of consultation, and services used.

4 Model of physicians’ antibiotic treatment decision

We propose a framework that combines machine learning predictions with a model of general

practitioner treatment choice that allows for flexible heterogeneity in physicians’ payoff functions

and skill levels. The model follows Chan et al. (2022) by separating an individual physician’s

treatment choice problem from the preceding step of forming diagnostic predictions. We depart

from their model by introducing heterogeneous patient types, making explicit that sampled

patients may vary in their likelihood of being sick conditional on observable characteristics.

Physicians can in principle observe such characteristics prior to patients’ sickness realisations

and use these to inform their prescription decisions, but the extent to which they do is a priori

unknown.

Physician skill manifests in two dimensions. Diagnosis based on observable patient char-

acteristics, i.e. information on a patient’s type, and diagnosis based on clinical examination,
10See Statistics Denmark (2012b,d,e,a,f,g,c,h,i) and The Danish Health Data Authority (2012a,b).
11While observing a purchase is not equivalent to observing a prescription, Koulayev et al. (2017) document

that prescription medication adherence is high in Denmark.
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i.e. information based on a patient’s sickness state. This distinction of the two types of diag-

nostic skill provides a way to analyze the effects of counterfactual policies that improve either

diagnostic skill independently. This is crucial for the ex ante evaluation of policies informed by

machine learning risk predictions, e.g. providing information on patient types, because in many

situations experts such as physicians may hold valuable private information that needs to be

accommodated in the design of effective policies.

Sickness

We define patient i’s binary sickness realization, yi, as determined by a latent index, νi, such

that the patient has a bacterial infection according to

yi = 1[νi > 0]. (1)

The latent index νi is normally distributed with mean τi, the patient’s type, such that νi ∼

N (τi, 1).12 Hence, a patient’s probability of acquiring a urinary tract infection as a function of

type τi is given by

P (yi = 1|τi) = Φ(τi), (2)

where Φ(·) is the standard normal CDF. For physician j, patient types are distributed

τi ∼ N (τj , σ
2
τj ), (3)

where the physician-specific distribution of patient types accommodates variation in patients

assigned to general practice clinics, for example based on geographic location, physician char-

acteristics, or systematic differences in physicians’ laboratory testing decisions. We make no

distributional assumptions on τj or στj across physicians.

Prediction

When a patient consults a physician in clinical practice, the physician gathers information about

the patient’s true sickness state from two sources. Physician j’s signal on patient i’s type based

on observable characteristics is given by

ξij ∼ N (τi, σ
2
ξj
). (4)

12We normalize the sickness threshold to 0 and the variance of νi to 1.
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The parameter σξj represents the physician’s diagnostic skill where low signal variance reflects

high skill and high signal variance reflects low skill.

Clinical examination of patient i provides a direct signal on a patient’s sickness state given

by

ηij ∼ N (yi, σ
2
ηj ). (5)

It can include, for example, information gathered based on symptom assessment, patient-

reported behavioral factors, and diagnostic tests at the point-of-care.13 The parameter σηj

represents the physician’s clinical diagnostic skill. Again, low signal variance reflects high skill,

high signal variance reflects low skill.

We assume the signals ξij and ηij are independent.14 That is, information related to the

observable patient-type specific disease prevalence is assumed to be independent of information

acquired via clinical assessment at an in-person consultation. For example, this assumption

implies that information coming from the assessment of a dipstick or microscopy rapid diagnostic

test, which signals the presence of bacteria in the urine (St John et al. 2006), is independent of

the knowledge of different disease risk between an older and a younger woman.

Assuming a physician knows her own skill levels and her patient type distribution, her

posterior probability of the patient’s sickness state conditional on type and diagnostic signals is

given by P (yi = 1 | ξij , ηij ; τj , στj , σηj , σξj ), which is derived formally in Appendix A.

Treatment choice

A physician’s payoff function at an initial consultation reflects the trade-off between a patient

suffering the sickness cost from delaying prescribing until a test result is available and the social

cost of prescribing associated with a potential increase in antibiotic resistance due to antibiotic

use. While the social cost is incurred for every antibiotic prescribed, the sickness cost of waiting

is only incurred by untreated patients suffering from a bacterial infection. Likewise, antibiotic

treatment is only curative and alleviates sickness if a patient suffers from a bacterial infection.

We abstract from the choice of antibiotic molecule and focus on the extensive margin, the decision
13Physicians typically perform either one or both of the rapid diagnostic technologies available today: urine

dipstick and microscopic analysis (Davenport et al. 2017). Dipstick analysis is a standard procedure but micro-
scopic analysis requires additional equipment and training. Errors in interpreting dipstick results and performing
microscopic analysis introduce variation in diagnostic skill in this setting (Holm et al. 2017), an observation
documented in medical decision-making more generally (Hoffrage et al. 2000; Pallin et al. 2014).

14The signal structure is given by the bivariate normal(
ξij

ηij

)
∼ N

((
τi
yi

)
,

[
σ2
ξj

0

0 σ2
ηj

])
. (6)
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whether to prescribe an antibiotic versus delaying or avoiding antibiotic treatment altogether.15

Thus, the general payoff function at a patient’s initial consultation can be written as

π(d, y;β) = −y(1− d)− βd, (7)

where d is an indicator for the decision to prescribe an antibiotic prior to observing the patient

test result, y is the sickness state, and β is the social cost of prescribing.16 Note that we normalize

the weight on the sickness cost, the first term in equation (7), to one because the social cost of

prescribing can only be identified relative to the sickness cost.17

A physician who maximizes expected payoff conditional on signals ξij and ηij proceeds to

prescribe an antibiotic if

dij = 1 ⇔ E{π(1, yi;βj) | ξij , ηij} > E{π(0, yj ;βj) | ξij , ηij}

⇔ P (yi = 1 | ξij , ηij , τj , στj , σηj , σξj ) > βj ,
(8)

that is, if the expected sickness cost for the patient while awaiting the test result is larger than

the social cost of prescribing.

5 Empirical Analysis

5.1 Analysis sample

We apply several restrictions to define the sample for our main analysis. Urine samples in

the hospital laboratory data constitute 477,609 samples out of which 156,694 are submitted by

general practitioners. Firstly, we exclude 39,592 test observations from pregnant women in our

analysis as both the test decision, including mandatory screening tests, and the prescription
15In our data, two molecules, Pivmecillinam and Sulfamethizole, account for 82 percent of all UTI-indicated

prescriptions. Conditional on observing a positive test result, Yelin et al. (2019) evaluate how prediction of
resistance probabilities can improve the choice of molecule using electronic health records from Israel. Kanjilal
et al. (2020) study molecule choice for an emergency department in the US.

16An alternative payoff function that would include the social cost of follow-up prescriptions to sick patients
who did not receive an initial prescription has the following form:

π(d, y;βj) = −y(1− d)− βjd− βj(1− ρ)y(1− d)

= −(1 + βj(1− ρ))y(1− d)− βjd

∝ −y(1− d)− β̃jd,

where ρ ∈ (0, 1) is the spontaneous recovery rate while awaiting test results and β̃j = βj/(1 + βj(1 − ρ)). The
term β̃j(1 − d)y is the social cost accrued from patients that did not get an initial antibiotic prescription but
did test positive for bacteria and were given a follow-up prescription if they did not spontaneously recover.
The counterfactual predictions using this payoff function are identical to our main specification and only the
interpretation of the weight on the externality changes.

17We refrain from using a monetary measure of these cost because existing research is lacking reliable estimates,
see Jit et al. (2020) for a recent survey. Hence, the parameter β is a composite measure of a physician’s subjective
assessment of the social cost of antibiotic resistance and her preference weight on this cost.
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decision do not represent typical cases of suspected UTI.

To focus on consultations that constitute a first contact with a physician within the patient’s

treatment spell, we further exclude 51,183 test observations where the patient received a systemic

antibiotic prescription or was tested within 28 days prior to the sample acquisition date. The

full set of test results used for machine learning comprises 65,919 urine samples taken during

initial consultations with men or non-pregnant women in 2010, 2011, and 2012. For estimating

the model and performing counterfactual policy analysis, we focus on the years 2011 and 2012

and require that clinics have at least 100 observations. The final analysis sample comprises 175

clinics and 36,972 observations.

By focusing on consultations during which physicians collected a urine sample for microbio-

logical laboratory testing, we ensure that definitive test outcomes are observed regardless of the

physicians’ prescription decisions. Hence, our results may not generalize to prescription occa-

sions that did not include microbiological testing. Even so, Ribers and Ullrich (2023) document

that the predicted risk distribution in the sample of tested patients is not distinctly different

from that of the general population of UTI cases and that selectivity of testing does not affect

the policy results of a threshold-based decision rule.

For all patients with UTI-indicated prescriptions between 2011 and 2012, the mean age is

56, the share of female patients is 86 percent, the share of patients with migration background,

reflecting a group of patients potentially less well known to Danish physicians, is 11 percent, and

the share of patients living in a single household is 57 percent. In our analysis sample of tested

patients, those who received a prescription have a mean age of 49, are women in 85 percent

of cases, 15 percent have a migration background, and 51 percent live in single households.

Individuals with a positive bacterial test outcome have a mean age of 52, the share of females is

87 percent, 13 percent have a migration background, and 54 percent live in single households.

5.2 Sample descriptives

Table 1 shows descriptive statistics for the 175 clinics included in the estimation sample. The

top panel presents summary statistics for the sample of tested patients used for estimation. The

bottom panel summarizes the number of all patients visiting a sampled clinic in the sample

period.

The mean sample size per clinic is 211 initial consultation observations with a laboratory test,

comprising 169 unique patients. On average, the number of patients per clinic for whom a clinic

is their primary general practitioner is 3,491. In the two-year period of our estimation sample,

on average 486 unique patients received a urine dipstick diagnostic in the sample period, which is
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typically performed at urinary tract-related consultations in general practice. Laboratory testing

for bacterial UTI is indicated in clinical practice when point-of-care diagnostics are inconclusive

(Davenport et al. 2017). The 169 unique patients who received an initial laboratory diagnostic

correspond to 35 percent of patients with at least one urinary tract consultation.18

Table 1 Clinic-level summary statistics

Mean St.dev.

Microbiological laboratory data, tested patients
Initial consultations with laboratory test, per clinic 211 104
Unique patients with laboratory test, per clinic 169 68
Laboratory test result delay in days 3.1 0.3
Initial antibiotic prescribing rate 0.39 0.12
Bacterial rate 0.38 0.09
Initial prescribing rate, bacterial infections 0.60 0.14
Initial prescribing rate, no bacterial infections 0.26 0.10
Claims data, all patients
Unique patients, per clinic 3,491 1,486
Unique patients with dipstick claim, per clinic 486 269
Unique patients with microscopy claim, per clinic 91 203

Clinics 175
Initial consultation observations 36,972

Notes: This table reports the means and standard deviations across clinics for
the estimation sample in years 2011 and 2012.

Laboratory test procedures take two or more days during which general practitioners must

decide under uncertainty. In our sample, the mean waiting time was 3.1 days with a stan-

dard deviation of 0.3. Since we know the precise timing of urine sample acquisitions and the

test response date, we can determine whether physicians prescribe antibiotics with or without

knowledge of the test result. Before knowing the test result, physicians prescribe an antibiotic

in 39 percent of cases, on average. This rate corresponds nearly to the true bacterial rate of

38 percent. However, on average only 60 percent of patients with bacterial infections receive

a prescription at the initial consultation while 26 percent of patients without a bacterial infec-

tion receive one, pointing to a substantial mismatch between initial prescriptions and bacterial

infections.

5.3 Physician heterogeneity in prescription decisions

To inspect heterogeneity in observed treatment decisions, we view the physician’s problem

through the lens of binary classification where the prescription decision at an initial consul-
18We observe the date of a laboratory test but not of a dipstick test or consultation claimed by a clinic. Hence,

we cannot compute the laboratory test rates based on a perfect patient-consultation match.
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tation is the predicted condition and the laboratory test outcome indicating a bacterial infection

is the true condition. The true positive rate (TPR) is the share of patients prescribed an an-

tibiotic out of all patients with bacterial infections. The false positive rate (FPR) is the share

of patients prescribed an antibiotic out of all patients without bacterial infections. Hence, the

FPR is a measure of overprescribing.

Figure 1 shows a heat map of all individual clinics’ locations in the TPR-FPR space. No

clinics are below the diagonal which would indicate a higher rate of prescribing to negative test

results than to patients with positive test results. On the diagonal physicians would prescribe

equally to both groups indicating that they cannot distinguish the two and prescribe at random.

Moving away from the diagonal towards the top-left is indicative of higher diagnostic skill in

that physicians prescribe more to patients with infections than to those without. At the top-left,

a physician with perfect skill would prescribe to 100 percent of positive test results and to 0

percent of non-bacterial test results.
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Figure 1: Heat map of clinics’ prescribing rates conditional on test result

Notes: To ensure anonymity, the figure shows a heat map of an underlying scatter plot, with a
minimum of five clinics used for local means. Darker areas represent higher clinic density.

Being located close to the origin indicates a large weight on the antibiotic resistance external-

ity relative to individual patient sickness cost, reflected in low levels of overprescribing but also

13



low levels of appropriate prescribing. Being located towards the top right corresponds to more

intense prescribing to patients who have both bacterial and non-bacterial test results, reflecting

a low weight on the antibiotic resistance externality relative to individual sickness cost.

Overall, general practitioners appear to do well in avoiding prescribing to non-bacterial

cases while prescribing to a high share of bacterial infections. Yet, the significant variation both

perpendicular as well as parallel to the diagonal line indicates variation in skill and payoffs across

clinics.

However, because the observed variation does not only reflect skill and payoffs but also

variation in clinics’ distributions of patients conditional on their testing decisions, a model

incorporating the patient type distribution is needed to identify skill and payoffs.

5.4 Machine learning predictions

Machine learning tools can provide a personalized estimate of a patient’s risk of UTI based on

observables. We build on results from Huang et al. (2022) and Ribers and Ullrich (2023) who

compute m(xi) = E[yi|xi], that is the expected microbiological test outcome yi that determines

if patient i with observable covariates xi, available at the time of consultation, suffers from a

bacterial UTI. We use the extreme gradient boosting algorithm (XGBoost), a fast and flexible

ensemble method for structured, tabular data (Friedman et al. 2000; Friedman 2001; Chen and

Guestrin 2016). The sample period 2010 serves as data for tuning and training the machine

learning algorithm. We compute out-of-sample predictions for the analysis sample composed of

all consultations from January 1st, 2011 to December 31st, 2012.

The area under the receiver operating curve (AUC) for the predictions in the analysis sample

is 0.725. Figure 4 in Appendix B shows mean bacterial rates over bins of 100 consecutive observa-

tions after sorting all observations based on machine learning predicted risk. The close alignment

along the diagonal illustrates the quality of predictions throughout the range of predicted risk.

The top predictors for bacterial outcomes reported in Ribers and Ullrich (2023) include

patient age, gender, consulted clinic identifier, recent antibiotic prescriptions, recent antibiotic

resistance results, clinic-specific resistance levels, regional prescription intensity, and recent hos-

pital stays. These predictors can be plausibly related to the prevalence of bacterial infections

such as UTI but no causal interpretation can be given to predictors selected by current machine

learning methods. Details on the setup and implementation of the prediction algorithm, includ-

ing replications using LASSO-based predictions, are described in detail in Ribers and Ullrich

(2023). We take these predictions as given and focus on the policy evaluation problem.
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5.5 Patient type distributions

The distributions of true patient types are a priori not observable to us and, importantly,

determined by clinics’ propensities to test patients. We make use of the machine learning

predictions to estimate the patient type distribution for each clinic. To map machine learning

predictions m(xi) into the model, we obtain patient types τi = Φ−1(m(xi)) by inversion, where

Φ(·) is the standard normal CDF.

However, machine learning predictions contain error. For inferring the patient type distri-

bution, we avoid making the assumption that machine learning predictions represent the true

patient type. Instead, similar to Mullainathan and Obermeyer (2022), we require the weaker

assumption that the ordering of machine learning-predicted patient types reflects their true

ordering. We run a binary logit regression for each clinic,

yi =
exp(λi)

1 + exp(λi)
, (9)

where λi = β0 + β1m(xi) + ϵi.19 The predicted outcomes of this regression provide our ad-

justed estimates of predicted risk, m̃(xi). The patient type estimates, which we will use in the

estimation of the structural model, follow by inversion, τ̃i = Φ−1(m̃(xi)).

To infer clinic-specific type distributions, we define the structural parameters τj = E[τ̃i(j)] and

στj =
√
E[(τ̃i(j) − τj)2] for the set of patients Ij consulting clinic j. We estimate τ̂j = 1

Nj

∑
i∈Ij τ̃i

and σ̂τj =
√

1
Nj−1

∑
i∈Ij (τ̃i − τ̂j)2, where Nj is the number of patients consulting clinic j.

5.6 Identification of physician skill and payoff parameters

Identification relies on a key feature reflected in many medical treatment decision contexts: the

initial treatment decision must be made before test results from diagnostic procedures become

available. In our data, on average, the waiting period for laboratory test results is 3.1 days, after

which the true sickness state of the patient is revealed independent of the initial treatment de-

cision. Consequently, we do not experience selection on labels and observe the joint distribution

of prescription decisions and sickness realizations. Hence, we can directly observe true positives,

true negatives, false positives, and false negatives.

Chan et al. (2022) show that a single skill parameter and a preference parameter can be

identified from observing a decision maker’s TPR-FPR location. Their model generates unique

non-overlapping receiver operating characteristic (ROC) curves as a function of the skill param-

eter. An ROC curve represents all possible trade-offs between the TPR and FPR attainable for
19More flexible functional forms such as mean and rolling mean outcomes over bins of predicted risk do not

change the results but require researcher decisions on bin sizes.
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a given skill level. Once the ROC curve is determined, the position along the curve reflects the

physician’s preference weight, that is, the exact choice of trade off between TPR and FPR. This

approach requires that patient type distributions are the same across clinics. Several papers

have employed random assignment designs to plausibly assume this condition holds (Dobbie

et al. 2021; Chan et al. 2022; Marquardt 2022). When disease prevalence and the distribution of

patient types vary across clinics, observing a physician’s location in the TPR-FPR space is not

sufficient for identification. The clinic’s patient type distribution is also needed. We make the

identifying assumption that physicians know the type distribution for patients they test, with

mean type τj and variance στj .

In our model, the shape of physician j’s ROC curve is jointly determined by the two skill

parameters σξj and σηj . To see this, we show simulated ROC curves and their associated AUC

values in Figure 5 in Appendix C. Higher levels in either skill dimension result in ROC curves

shifted towards the top-left, implying better prediction ability, higher AUC values, and more

favorable TPR-FPR trade-offs for the physician. This observation implies that multiple skill

level combinations can result in different ROC curves that cross the same TPR-FPR point, as

a decrease in one skill can be compensated by an increase in the other.

The two skill parameters on patient types and sickness realizations are separately identified

by how physician prescribing differs as a function of continuous patient types and binary sickness

realisations. At the one extreme, a physician relying only on the patient type signal, that is

σξj < ∞ and σηj = ∞, will not be able to diagnose patients on their sickness realisations as

no clinical information is used. Such a physician must have E(dij | τi, yi) = E(dij | τi) so that

prescription decisions will be an increasing function of patient types only. At the other extreme,

a physician relying only on the clinical examination signal, that is σξj = ∞ and σηj < ∞, will

have E(dij | τi, yi) = E(dij | yi) so that prescription decisions will only be an increasing function

of sickness realizations. Figure 6 in Appendix D shows expectations over simulated decisions as

a function of continuous patient types and binary sickness realisations for multiple parameter

values. Larger σξj is reflected in a steeper slope of the function with respect to patient type,

while larger σηj separates the function into two curves conditional on y.20

Given skill levels, the preference parameter βj is identified by the physician’s observed TPR-

FPR location along the ROC curve ranging from never prescribing for β = 1, with (TPR,FPR) =

(0, 0), to always prescribing for β = 0, with (TPR,FPR) = (1, 1).
20We provide simulations here because the comparative statics with respect to the two skill parameters are

difficult to derive with no closed form solution.
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Interpretation of σηj with varying patient-level diagnostic difficulty We model the

signals obtained from clinical examination, ηij , as centered on the sickness state yi ∈ {0, 1}.

Hence, the skill parameter σηj is interpreted relative to the normalization of the distance be-

tween the binary sickness states to the unit interval. If patients differ in diagnostic difficulty,

physicians with an easier patient group might have a distance between sickness states larger

than one, making it easier to distinguish sickness states for a given σηj . A patient group with

harder diagnostic difficulty would be reflected in a distance between sickness states smaller than

one. Hence, potential unobserved variation in patient difficulty limits the comparison of clinical

diagnostic skill across physicians as it is not clear if differing σηj are due to differences in skill

or patient difficulty. However, the normalization does not affect counterfactual outcomes where

we hold σηj and the patient sample fixed.

5.7 Variation in testing

Physicians likely have valuable information that allows them to test with high yield, that is with

a high bacterial rate. While the observable data contain rich patient- and clinic-level information

that also capture persistent practice styles in testing, for example by including clinic identifiers as

predictors, we cannot exclude that remaining systematic variation in unobservables exist.21 Even

though the structural parameters required for the evaluation of counterfactuals are identified,

to inspect further external validity and to have an indication of potential variation in diagnostic

difficulty of tested patients across clinics, we inspect whether variation in testing is driven by

unobservables which may plausibly be correlated with test outcomes.

In Danish general practice, evidence suggests that decisions to send urine cultures to a

laboratory lack systematic patterns. Córdoba et al. (2018) find that cases defined as suspected

complicated UTI or the use and results of of rapid dipstick and microscopy tests, unobservable

to us, do not predict the use of laboratory tests. Holm et al. (2021) analyze clinical management

of UTI in Denmark and document that symptom assessment in general practice is highly noisy.

Yet, rapid point-of-care diagnostics are known to help identify certain bacterial strains which

may inform the initial decision to test.22 Furthermore, virulence and severity of disease can vary
21Variation in diagnostic difficulty may in principle also be introduced by patients’ selection of which physician

to consult. In Denmark, general practitioners are assigned by an individual’s residential address. Switching away
from these default assignments is possible but uncommon. One reason for the lack of switching is the small choice
set patients have in practice due to capacity constraints in Danish general practice (Kristiansen and Sheng 2022).
Therefore, physicians treating UTI are almost completely determined by location of residence. The data we use
for prediction contain information about patients’ location of residence in addition to the described socioeconomic
and health data, allowing for the prediction algorithm to use this information. Using data from Denmark, Huang
and Ullrich (2023) provide evidence that patients do not sort into general practice clinics based on antibiotic
prescribing style.

22The ability to detect bacterial strains varies across in-clinic diagnostics. Nitrite dipstick diagnostics can help
detect so-called gram negative organisms of which E.coli is the most common for UTI. However, nitrite dipstick
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between bacterial strains which may lead to variation in testing (Flores-Mireles et al. 2015).

To see if information acquired at initial consultations may lead to variation in testing in

our sample, we first inspect the balance of the types of bacteria found in tests conditional on

clinic-specific test yield, Ej [y]. If physicians systematically use information on the presence

of bacteria from point-of-care tests for deciding whether to obtain a laboratory diagnostic, we

should see differing rates of bacterial species across clinics with different test yields. We split

clinics into two groups, above and below the median bacterial rate. The top panel in Table 4

in Appendix F reports the observation-weighted shares of bacterial strains for these two groups.

The differences across bacteria are small. After controlling for mean predicted risk, which maps

into the patient type distribution in the structural model, by comparing clinics below and above

the median of deviations in mean test yield and predicted risk, Ej [y]−Ej [m(x)], the differences

become markedly smaller and not statistically significantly different from zero.

Physicians may also vary in their knowledge about the prevalence of antibiotic resistance for

their patients. Such knowledge may influence the decision to use laboratory diagnostics. For

the five molecules commonly used to treat UTI, the bottom panel in Table 4 shows variation

in resistance rates between clinics with low and high test yield. Controlling for predicted risk,

these differences become much smaller and not statistically significantly different from zero,

providing further indication that unobserved, consultation-specific diagnostic information at the

point-of-care is an unlikely driver of laboratory testing.

The choice of antibiotic at the initial consultation may also be informative of physicians’

expectations about potential bacterial species or resistances which may influence the decision

to test. The top panel of Table 5 in Appendix F shows that differences in the shares prescribed

between clinics with high and low test yield are small and mostly not statistically significantly

different from zero. Finally, the bottom panel of Table 5 shows differences in clinics’ use of

diagnostics. The number of laboratory test observations and usage of point-of-care tests such

as urine dipstick and microscopic analysis do not differ significantly between clinics with low

versus high bacterial rates in tested patients.

These findings fail to support notable selection on unobservables for the tested patient pool,

in particular after conditioning on predicted risk. Hence, noise in the decision to test may be

large, for example influenced by variation in logistical and organizational constraints in general

practice.

diagnostics can not detect bacterial strains such as Enterococci, Staphylococci, and other organisms that do not
convert nitrate to nitrite.
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5.8 Model parameter estimation

We estimate the model parameters in two steps. In the first step, we recover individual patient

types, τ̃i, and clinic-specific type distribution parameters τ̂j and σ̂τj as described in Section 5.5.

We plug these into the treatment choice model, assuming that physicians’ priors are equal to

their clinics’ patient type distribution.

In the second step, we estimate the model for each clinic by maximum likelihood using

observed data on prescription decisions, dij , sickness realizations, yi, and estimated individual

patient types, τ̃i. The simulated likelihood contribution from a single observation is

ℓij(σξj , σηj , βj | dij , yi, τ̃i, τ̂j , σ̂τj ) = P (dij | yi, τ̃i, τ̂j , σ̂τj , σξj , σηj , βj) (10)

where the probability of prescribing is computed in equation 23 in Appendix E. The joint log-

likelihood for the sample of clinic j is given by

Lj(σξj , σηj , βj | dj ,yj , τ̃j , τ̂j , σ̂τj ) =
∑
i∈Ij

log
[
ℓij(σξj , σηj , βj | dij , yi, τ̃i, τ̂j , σ̂τj )

]
, (11)

with prescription decisions dj = {dij}i∈Ij , sickness realizations yj = {yij}i∈Ij , and patient types

τ̃j = {τ̃i}i∈Ij for all patients of clinic j. Physician skill and payoff parameters are recovered as

(
σ̂ξj , σ̂ηj , β̂j

)
= argmin

σξj
,σηj ,βj

Lj(σξj , σηj , βj | dj ,yj , τ̃j , τ̂j , σ̂τj ). (12)

6 Estimation results

Table 2 reports the means and standard deviations of the distribution of the estimated param-

eters {σ̂ξj , σ̂ηj , β̂j} across clinics. The mean of σ̂ξj is markedly larger than σ̂ηj , implying that

physicians on average rely more on clinical diagnostic information than on information obtained

from observing patient types. This result suggests that providing patient type information in

the form of machine learning predicted risk should improve physicians’ ability to predict the bac-

terial cause of infections. The extent to which patient type and clinical diagnostic information

is used in decisions varies significantly between clinics, as reflected in the standard deviations

of the estimates of σ̂ξj and σ̂ηj . The mean value of 0.43 of the preference parameter estimates

suggests conservative physicians on average. The mean physician weighs the social cost of in-

creasing antibiotic resistance due to one antibiotic prescription slightly below one half the health

benefit of instantly giving an effective treatment to one patient. The standard deviation of 0.10

reflects existing heterogeneity in how physicians solve this trade-off.
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Table 2 Distribution of parameter estimates

Mean (St.dev.)

Patient type distribution, τ̂j -0.33 (0.27)
Patient type distribution, σ̂τj 0.50 (0.14)

Type signal noise, σ̂ξj 3.01 (3.64)
Diagnostic signal noise, σ̂ηj 1.28 (0.86)
Payoff function parameter, β̂j 0.43 (0.10)

Notes: This table reports the means and standard devia-
tions of the nonparametric distribution of parameter esti-
mates over 175 clinics. The model is estimated separately
for each clinic.

Figures 7 to 9 in Appendix G show the distributions of parameter estimates. Due to

anonymization requirements, we show heat maps of scatter plots where no values in areas con-

taining fewer than five clinics are reported. The distributions of both skill parameters σξj and

σηj are concentrated in the area between 0 and 3. Correlation between both parameters appears

to be small across clinics. Yet, we find a relevant number of physicians with very large σξj es-

timates. In Figure 7, physicians with estimated σξj > 5 account for 21% of all physicians. This

group does not appear to make particular use patient type information encoded in observable

data. Therefore, combining systematic information in predictions m(xi) with valuable clinical

diagnostic information used by these physicians may substantially improve decisions. Figures 8

and 9 do not show a systematic relationship between the estimated payoff weights and both noise

parameters. Figure 10 in Appendix I shows the distributions of the observed mean, over-, and

underprescribing rates as well as their simulated in-sample counterparts based on the estimated

model. The simulated distributions closely resemble the observed data.

Observed heterogeneity To investigate potential sources of heterogeneity across clinics, we

correlate parameter estimates with observable clinic characteristics. For clinics with more than

one physician, we aggregate individual physician characteristics to the clinic level because pre-

scriptions are observed for clinics. Because the complete registry linking clinics with individual

physician identifiers could not be obtained, we can merge characteristics for a subset of 107 of the

total of 175 clinics. Linear regression results of the parameter estimates on clinic characteristics

in Tables 6 to 8 in Appendix H show several interesting patterns. In Table 6, the correlation of

σ̂ξj with physician age, the use of diagnostics and the number of patients per physician is posi-

tive, reflecting lower use of patient type information, but none of the coefficients are statistically

significant. In Table 7, for the estimates of the skill parameter for clinical diagnostic information,

σ̂ηj , higher noise is associated with higher physician age. Older physicians might rely more on
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their clinical experience and personal knowledge of patients than on point-of-care tests. Lower

noise is associated with higher propensity to perform point-of-care dipstick analyses of urine

samples, which can provide clinical information instantly. In Table 8, for β̂j , the coefficients are

close to zero except for a small negative coefficient on physician age.

7 Counterfactual policy evaluation

We consider four counterfactual policies to assess how measuring preferences and information is

essential for understanding the potential of machine learning predictions to help achieve socially

desirable outcomes. For example, if βj differs from socially desirable weights on the antibiotic

resistance externality, physicians’ adherence to prediction-based decision rules must be enforced

or incentivized. Without accounting for heterogeneity and diverging incentives, ex ante ex-

pected improvements based on prediction-based decision rules may be mistakenly ascribed to

improved prediction technologies instead of to the imposition of socially desirable objectives.

Policy approaches relying on improved predictive information while allowing full discretion to

expert decision makers may then fail to achieve their intended outcomes.

7.1 Decision outcomes

We evaluate policies by comparing counterfactual decisions dCF
ij with observed physician deci-

sions dij . For the full set of patients I across all clinics, changes in initial prescribing are defined

by

∆d =
∑
i∈I

(dCF
i − di).

Changes in overprescribing, i.e. antibiotic prescriptions given to patients without a bacterial

infection, are defined

∆d(1− y) =
∑
i∈I

(dCF
i − di)(1− yi)

and changes in the number of initially treated bacterial UTI patients are defined

∆dy =
∑
i∈I

(dCF
i − di)yi.

Table 3 shows policy outcomes for the four counterfactual interventions. For every counterfactual

outcome, we estimate 95 percent confidence intervals using bootstrapping based on 1000 samples

and including all estimation steps.23

23We use the Bayesian bootstrap by re-weighting bootstrap observations as proposed in Rubin (1981), which
offers higher speed and stability with nonlinear models. Standard bootstrapping using discrete weights by re-
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The first counterfactual (CF1) serves as a benchmark, in which we reproduce an algorithmic

prescription rule as in Huang et al. (2022). Here we do not make use of our choice model but

instead include the physician decisions as a predictor in the machine learning algorithm.24 In

this policy, prescriptions for patients with low predicted risk are delayed until test results are

available. All patients with high predicted risk receive prescriptions before test results arrive.

Hence, counterfactual decisions are determined by a threshold k and the rule dCF = 1[m(x, d) >

k]. This type of policy resembles the approach taken by the prior literature evaluating machine

learning predictions (Bayati et al. 2014; Chalfin et al. 2016; Kleinberg et al. 2018; Yelin et al.

2019; Hastings et al. 2020; Huang et al. 2022; Ribers and Ullrich 2023). Similar to this literature

we focus on a solution for k that guarantees a welfare increase to a social planner for all potential

payoff weights βS ∈ [0, 1]. We set k to maximize reductions in antibiotic use without changing

the number of prescriptions to bacterial infections, that is keeping ∆dy = 0. This policy relies on

the assumption that human discretion can be overruled or that decision makers adhere perfectly

to prediction-based prescription rules.

The first counterfactual policy reduces overall prescribing by 8.9 percent and overprescribing

by 22.7 percent while, by construction, the change in the number of prescriptions to bacterial

infections is zero. Without a model, we remain agnostic to the mechanism leading to these

improved outcomes.

The policy in the second counterfactual (CF2) provides physicians with the machine learning

prediction of type τi for every patient and assumes that physicians use it without noise by setting

σξj = 0. In this counterfactual, the clinical diagnostic skill and payoff function parameter are held

fixed. We find that overall prescribing increases by 3.5 percent and overprescribing decreases

by 3.9 percent. The number of treated bacterial infections increases by 8.3 percent. Hence,

the improved information on patient type provided to the physicians leads to more efficient

prescribing but fails to achieve the aim of reducing antibiotic prescribing overall. Comparing

these results with the redistribution policy in CF1, we conclude that the reductions in overall

prescribing and in overprescribing documented in the first counterfactual cannot be driven only

by a potential superiority of machine learning predictions over physicians’ diagnostic information.

In the third counterfactual (CF3), we again provide physicians with the machine learning

prediction of type τi for every patient and hold their clinical diagnostic information fixed. In

sampling observations results in very similar confidence intervals. For computational reasons, we do not retrain
the machine learning algorithm for every bootstrap sample and, hence, keep m(xi) fixed.

24Figure 11 in Appendix J shows the quality of predictions, with an AUC of 0.79, is markedly higher than when
physician decisions are not used as a predictor because all predictive information encoded in physician decisions
can now be used. Basing an algorithmic rule with a single threshold on these predictions, which we do here for
convenience, is nearly equivalent to excluding physician decisions as a predictor and using a two-threshold rule
that delegates some decisions to physicians as in Ribers and Ullrich (2023).
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Table 3 Counterfactual policy outcomes

ML redistribution Provide ML-based τi Incentives only
∆dy = 0

dCF = 1[m(x, d) > k]
σξj = 0

σξj = 0

βj = β̂j + κ1
βj = β̂j + κ2

Overall prescribing, ∆d, -8.9 3.5 -8.1 -8.1
in percent of Nd = 14, 359 [-9.5, -8.4] [3.1, 4.0] [-8.5, -7.7] [-8.5, -7.7]

Treated bacterial cases, ∆dy, 0 8.3 0 -5.7
in percent of Ndy = 8, 704 [7.9, 8.7] [-6.0, -5.4]

Overprescribing, ∆d(1− y), -22.7 -3.9 -20.6 -11.8
in percent of Nd(1−y) = 5, 655 [-23.9, -21.4] [-4.6, -3.0] [-21.5, -19.7] [-12.3, -11.3]

Mean change in payoffs, 0.074 0.119 0.114 -0.001
1
J

∑J
j=1Wj(dj) [0.067, 0.079] [0.115, 0.123] [0.111, 0.118] [-0.002, -0.001]

Notes: This table reports changes to the status quo in percent across 175 clinics and 36,972 patients. The
left column shows further relevant absolute totals. The risk threshold for prescribing in counterfactual one
is k = 0.510 [0.508, 0.513]. We set κ1 = 0.038 [0.037, 0.040] to obtain ∆dy = 0 in counterfactual three and
set κ2 = 0.021 [0.020, 0.021] to obtain ∆d = −8.1 in counterfactual four. Bootstrapped 95 percent confidence
intervals based on 1000 bootstrap samples in brackets.

addition, we increase the payoff parameter βj by a constant κ1 to maximize the reduction in

overall prescribing while holding the number of prescriptions to bacterial infections fixed. We

define the counterfactual payoff parameter as βj = β̂j+κ1, where setting κ1 = 0.038 [0.037, 0.040]

attains an overall reduction in prescribing by 8.1 percent and in overprescribing by 20.6 percent.25

This intervention could be implemented using nudges or an antibiotic tax that shifts the relative

weight on the social cost of antibiotic resistance and a patients’ sickness cost of delayed antibiotic

treatment. Compared with the redistribution policy in counterfactual one, the overall reductions

in (over)prescribing are now similar. However, clinic-level outcomes differ markedly between CF1

and CF3 which we will discuss in further detail below.

Finally, in the fourth counterfactual (CF4) we leave diagnostic information unchanged in both

dimensions but adjust clinics’ payoffs. We increase βj by a constant κ2 = 0.021 [0.020, 0.021] such

that the same reduction in overall antibiotic use is attained as in the third counterfactual. We

motivate this counterfactual by policies that aim to raise awareness and increase the perceived

social cost of antibiotic use due to antibiotic resistance (Hallsworth et al. 2016). The reduction

in antibiotic use is 8.1 percent by construction. However, overprescribing is only reduced by 11.8

percent and the intervention comes at the cost of prescribing antibiotics to 5.7 percent fewer

patients with a bacterial infection. Thus, policies focusing only on preferences may do harm

when decisions are made under uncertainty. Physicians use antibiotics inefficiently because they

mis-predict risk and not only because they do not care about the problem of antibiotic resistance.

Hence, the improvement of diagnostic quality appears to play an important role for ensuring
25Recalling that the mean estimated βj is 0.43, setting κ1 = 0.038 implies an increase in βj by 8.8 percent on

average.
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sustainable reductions in antibiotic use.

These results illustrate the value of separating the prediction and decision step in the struc-

tural model. The effects of interventions attempting to incentivize behavior according to social

objectives can be considered independently from interventions aimed at purely improving diag-

nostic information. This is in contrast to situations studied by Cowgill and Stevenson (2020)

in which algorithm outputs may be manipulated to communicate not only predictions but also

social objectives. They argue that such manipulations can lead to refusal by human experts

to use predictions. Our model allows for interventions in which the two channels, providing

machine learning predictions to experts and incentivizing social behavior, can be evaluated as

complements.

7.2 Clinic-level payoffs

Table 3 also reports the mean change of physician payoffs in Equation (7) for each policy, defined

as

Wj(d
CF
j ) =

Πj(d
CF
j )−Πj(dj)

Π̄j −Πj(dj)
(13)

where Π̄j = −β̂j
∑

i∈Ij yi is the first best outcome realized if the physician only gives prescrip-

tions to patients with a bacterial infection and Πj(dj) =
∑

i∈Ij π(dij , yi ; β̂j) is the physician’s

payoff for the set of observed decisions dj . Payoff gains are largest for the counterfactual policy

which provides patient type information and smallest for the policy in which only incentives

are used. The policy increasing physicians’ weights on the externality and providing predic-

tions generates gains which are nearly as large as the policy providing patient type information.

Redistributing prescriptions in the first counterfactual results in positive but lower gains than

policies that provide prediction information.

Figure 2 shows the distribution of clinic-level changes in payoffs for all counterfactuals. For

the first, using physician decisions as prediction input but allowing for no physician discretion,

a sizable share of clinics obtain decreased payoffs. All clinics benefit from information provision

and full discretion in the second counterfactual. When incentivized and given information, all

payoffs still increase but the distribution is shifted to the left, illustrating the misalignment

of objectives but also the offsettting value of new information. When only incentivized, the

distribution of payoff changes is symmetric around zero.

These results are intuitive given that information provision strictly improves efficiency while

changing physicians’ weights, or decisions altogether, conflicts with their preferences. This con-

flict can hinder the use of a redistribution policy and require a more sophisticated policy design.

In particular, these results further demonstrate that in policy contexts where diagnostic infor-
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Figure 2: Distribution of counterfactual payoff changes, Wj

mation is limited, manipulating incentives without improving information can lead to adverse

outcomes.

7.3 Clinic heterogeneity in counterfactual changes of decision outcomes

To investigate heterogeneity in policy outcomes further, we plot changes in overall antibiotic

prescribing and in prescriptions to bacterial infections for all four counterfactual policies in

Figure 12 in Appendix K. In Figure 12a the first counterfactual leads to large heterogeneity in

outcomes, including large increases in antibiotic prescribing as well as in foregone treatment. In-

stead, providing predictions results in significantly more concentrated counterfactual outcomes,

shifted upwards to increase the number of treated bacterial cases in the second counterfactual

in Figure 12b and shifted left and downwards when incentivized to prescribe less in Figure 12c.

As depicted in Figure 12d, changing only the preference parameter without providing new in-

formation is effective in reducing antibiotic use for all clinics but at the cost of fewer treated
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bacterial infections for all clinics.

7.4 Social planner

Finally, taking the perspective of a social planner, we provide a ranking of counterfactual policies

based not only on reported counts of outcomes but on gains in payoffs given social preferences.

We calculate counterfactual welfare effects over the continuum of potential social planner pref-

erence parameter values βS ∈ [0, 1] as

W (dCF , βS) =
Π(dCF , βS)−Π(d, βS)

Π̄−Π(d, βS)
(14)

where Π̄ = −βS
∑

i∈I yi is the first best aggregate outcome over the full set of patients, I,

realized if and only if prescriptions are given to patients with a bacterial infection. Π(d, βS) =∑
i∈I π(dij(i), yi ; β

S) is the aggregated payoff function for the set of decisions d.

Figure 3 shows W (dCF , βS) over the full support of βS , revealing that the best policy depends

on the social planner’s weight on the antibiotic resistance externality. If the social planner’s

weight on the externality is small, below approximately the average estimated physician βj of

0.43, the counterfactual policy CF2, providing physicians with machine learning predictions

and leaving them full discretion, maximizes the social planner’s payoff gains. This is intuitive

because it is only welfare-increasing to reduce prescriptions below the observed levels of physician

prescribing if society places a sufficiently large weight on the resistance externality. Otherwise,

treating more bacterial infections becomes the more important objective.

If the social planner’s weight on the externality is larger than the average estimated physi-

cians’ weight, then welfare gains are larger for policies CF1 and CF3 which implement the social

planner’s objective function by replacing physician decisions or by manipulating physicians’

weights’ on the externality to reduce prescribing. If a policy only incentivizes physicians, as in

CF4, the change in social welfare is negative for βS below the mean estimated physician βj due

to a reduction in treated bacterial infections. If the social planner places a larger weight on

the externality, policy CF4 leads to positive welfare gains although below those of counterfactu-

als CF1 and CF3. Hence, counterfactual CF4 appears to be suboptimal throughout the social

planner preference range.

Policies targeting preferences may however be easier to implement in practice than policies

improving diagnostic information. Depending on social preferences, targeting preferences can be

worthwhile in the context we consider here. We find this can have adverse effects when diagnostic

information is limited. Our results suggest that the largest welfare gains can be achieved when

improved diagnostics and targeting physician preferences are seen as complementary policy tools.
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8 Robustness checks

To assess the robustness of our results and qualitative conclusions, we estimate the model and

perform counterfactual policy evaluations for two alternative samples. The results are presented

in Appendix L.

First, we increase the period prior to an observed consultation based on which we define an

“initial” consultation. In the main analysis, we require four weeks without antibiotic treatment

or laboratory testing. If this period is too short, we might include some patients who are

still currently in treatment. If so, physicians may hold private information about the current

treatment spell for a patient, which would affect the decision to use a laboratory test as well as

to prescribe an antibiotic. Extending this period to 12 weeks of no prior antibiotic treatment or

laboratory testing, we obtain counterfactual policy changes in Table 9 that are slightly smaller

than our main result but lead to the same qualitative conclusions. Second, including clinics with

as low as 100 observations may lead to too small samples at the clinic-level. To check if our

results are sensitive to this potential issue, we restrict our sample to include only clinics with

at least 200 test observations. For this smaller sample of 68 clinics, we obtain counterfactual

policy results in Table 10 which closely align with the main results.
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9 Conclusion

Antibiotic resistance is driving an increasingly pressing global health crisis, making efficient an-

tibiotic use a prime policy concern. Through the lens of this policy problem, we consider how

policies enabled by machine learning predictions can be evaluated when humans hold heteroge-

neous, private information. It is typically difficult to determine whether private information is

complementary to or can be substituted by machine learning predictions. If such information,

or the skill required to obtain it, is difficult to measure and varying across decision makers,

assessing the added value of machine learning predictions ex ante is challenging. Field trials

may be designed to provide reliable assessments but are often difficult to implement for ethical,

legal, or practical reasons, particularly so in health care (Stern et al. 2022). Therefore, it is

important to develop model-based tools to evaluate potential implementations ex ante.

The specific setting we consider, antibiotic prescribing for suspected urinary tract infections,

resembles many situations in primary care provision and more generally expert decision prob-

lems under initial uncertainty. Exploiting that we observe the true health outcome ex post, we

provide evidence that information generated by machine learning predictions and information

held by human experts can be complements. We further show that improved information alone

may not be sufficient to achieve socially desirable policy goals, requiring policies that combine

information-provision and incentives. Ludwig and Mullainathan (2021) discuss the difficulty of

designing algorithms to provide recommendations for decision-support systems that efficiently

incorporate preferences and information. Hence, to curb antibiotic use, policy initiatives should

promote diagnostic innovations such as new rapid point-of-care tests and solutions using large-

scale patient data combined with incentives that internalize social cost, for example via a tax

on antibiotic prescriptions.

Several important avenues for further research specific to the context of antibiotic prescrib-

ing remain. It would be worthwhile to encode further clinical information, for example, from

electronic health records, such as reported symptoms and results from in-clinic diagnostics to

further improve machine learning predictions. This would require combining electronic health

records with administrative data. Further research is needed to better understand physicians’

potential behavioral reactions to the introduction of prediction tools. An interesting question in

this regard is how to design information provision to physicians to achieve the policy objective

of reduced prescribing as discussed in Cowgill and Stevenson (2020). Results from such studies

may provide insights on how to optimally communicate machine learning predictions, to what

extent to explain prediction outcomes, and potential effects on decision makers’ incentives to

acquire and use information and expertise.
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More generally, as data availability and the quality of prediction algorithms are improving at

a rapid pace, the rate at which such technologies will be more broadly adopted and productively

exploited will depend on the kind and quality of human expertise it can complement. Investment

in prediction technologies as well as in human capital, while emphasizing policy objectives, is

key to induce welfare-improving technological progress.
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A Derivation of the posterior sickness probability conditional on

diagnostic signals ξi and ηi

Physician j has a normal prior on patient types, N(τj , σ
2
τj ), and receives a patient type signal,

ξij ∼ N(τj , σ
2
ξj
), as given in equation (4). She hence forms the posterior belief about patient i’s

type given by

τi | ξij , τj , στj , σξj ∼ N(µij , σ
2
µj
) (15)

where

µij =
τjσ

2
ξj
+ ξijσ

2
τj

σ2
ξj
+ σ2

τj

and σ2
µj

=
σ2
ξj
σ2
τj

σ2
ξj
+ σ2

τj

. (16)

The physician’s latent sickness expectation conditional on the patient’s type signal is thus given

by

νi | ξij , τj , στj , σξj ∼ N(µij , σ
2
µj

+ 1), (17)

which implies that the physician believes the patient is sick with probability

P (yi = 1 | ξij , τj , στj , σξj ) = P (νi > 0 | ξij , τj , στj , σξj ) = Φ

 µij√
σ2
µj

+ 1

, (18)

where Φ(·) is the standard normal CDF.

Following a normal distributed signal on the patient sickness state from clinical assessment,

ηij , the physician’s posterior on the patient’s sickness realization becomes

P (yi = 1 | ξij , ηij , τj , στj , σξj , σηj )

=
P (ηij | yi = 1, σηj )P (yi = 1 | ξij , τj , στj , σξj )∑

yi=0,1 P (ηij | yi, σηj )P (yi | ξij , τj , στj , σξj )

=

ϕ(
ηij−1
σηj

)Φ

(
µij√
σ2
µj

+1

)

ϕ(
ηij−1
σηj

)Φ

(
µij√
σ2
µj

+1

)
+ ϕ(

ηij−0
σηj

)Φ

(
−µij√
σ2
µj

+1

)

=
1

1 + e

1−2ηij

2σ2
ηj

Φ

 −µij√
σ2
µj

+1


Φ

 µij√
σ2
µj

+1



,

(19)
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where ϕ(·) is the standard normal density function and we use that

ϕ(
ηij−0
σηj

)

ϕ(
ηij−1
σηj

)
=

1
σηj

√
2π
e
− 1

2

(ηij−0)2

σ2
ηj

1
σηj

√
2π
e
− 1

2

(ηij−1)2

σ2
ηj

= e
1
2

(ηij−1)2

σ2
ηj

− 1
2

(ηij−0)2

σ2
ηj = e

1−2ηij

2σ2
ηj . (20)
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B Machine learning predictions
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Figure 4: Bacterial rate E[yi] and machine learning predictions m(xi)

Notes: Mean bacterial test outcomes relative to predicted risk of bacterial UTI. Spheres and triangles
represent bins of 100 patients sorted by predicted risk.
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C Simulated ROCs and AUCs
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Figure 5: Simulated AUCs and ROCs as a function of σξ and ση
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D Simulated and observed decisions by y and m̃(xi)
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Figure 6: Simulated expected decisions as function of patient type and parameters

41



E Derivation of prescription probability for unobserved diagnos-

tic signals ξi and ηi

Given ξij , equations (8) and (19) allow the computation of an η∗ij(ξij) above which realizations

of ηij will be equivalent to a physician prescribing an antibiotic:

dij = 1 ⇔ P (yi = 1 | ξij , ηij , τj , στj , σξj , σηj ) > βj

⇔ ηij >
1

2
− σ2

ηj log


(

1

βj
− 1

)Φ

(
µij√
σ2
µj

+1

)

Φ

(
−µij√
σ2
µj

+1

)
 = η∗ij(ξij),

(21)

where, for notational ease, we suppress that η∗ij is also conditional on a physician’s prior and

skill parameters. Hence, to arrive at the probability that physician j prescribes an antibiotic to

patient i, we must integrate over realizations of ξij :

P (dij = 1 | yi, τi, τj , στj , σξj , σηj , βj) =
∫ ∞

−∞
Φ

(
yi − η∗ij(ξij)

σηj

)
1

σξj
ϕ

(
ξij − τi
σξj

)
dξij . (22)

We approximate the integral using Gauss-Hermite quadrature:

P (dij = 1 | yi, τi, τj , στj , σξj , σηj , βj) =
∫ ∞

−∞
Φ

(
yi − η∗ij(ξij)

σηj

)
1

σξj
ϕ

(
ξij − τi
σξj

)
dξij

=

∫ ∞

−∞
Φ

(
yi − η∗ij(ξij , τj , στj )

σηj

)
1

σξj
√
2π

e

(
ξij−τi
2σξj

)2

dξij

=
1√
π

∫ ∞

−∞
Φ

(
yi − η∗ij(uijσ

2
ξj

√
2 + τi)

σηj

)
eu

2
ijduij

≈ 1√
π

∑
k

wkΦ

(
yi − η∗ij(xkσ

2
ξj

√
2 + τi)

σηj

)
,

(23)

where xk and wk are Gauss-Hermite nodes and weights, respectively.
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F Balance tables

Table 4 Balance of types of bacterial infection causes

Ej [y] Ej [y]− Ej [m(x)]

≤ med > med ∆ ≤ 0 > 0 ∆

Bacterial species isolated

E. coli 0.70 0.73 0.026 0.70 0.72 0.019
(0.07) (0.06) (0.010) (0.07) (0.06) (0.010)

E. faecalis 0.07 0.05 -0.016 0.06 0.06 -0.007
(0.04) (0.03) (0.005) (0.04) (0.03) (0.005)

K. pneumoniae 0.04 0.04 0.005 0.04 0.04 -0.007
(0.03) (0.03) (0.004) (0.03) (0.02) (0.004)

S. agalactiae 0.04 0.04 -0.007 0.04 0.04 0.0002
(0.04) (0.02) (0.005) (0.04) (0.03) (0.005)

Others 0.15 0.14 -0.008 0.15 0.14 -0.004
(0.05) (0.04) (0.007) (0.05) (0.05) (0.007)

Molecule-specific resistance

Mecillinam (J01CA11) 0.23 0.19 -0.037 0.22 0.21 -0.012
(0.06) (0.04) (0.008) (0.06) (0.06) (0.009)

Trimethoprim (J01EA01) 0.22 0.21 -0.016 0.22 0.21 -0.008
(0.07) (0.05) (0.009) (0.07) (0.04) (0.009)

Sulfamethizole (J01EB02) 0.36 0.33 -0.025 0.35 0.34 -0.004
(0.08) (0.06) (0.011) (0.08) (0.06) (0.011)

Ciprofloxacin (J01MA02) 0.14 0.12 -0.022 0.13 0.13 -0.004
(0.06) (0.04) (0.008) (0.06) (0.04) (0.008)

Nitrofurantoin (J01XE01) 0.06 0.06 -0.005 0.06 0.05 -0.008
(0.04) (0.03) (0.005) (0.03) (0.03) (0.005)

Number of clinics 88 87 96 79

Notes: This table reports mean bacterial species and resistance rates for clinics
above and below the median (med) of mean bacterial rates Ej [y] and mean devia-
tions Ej [y]−Ej [m(x)]. Physician-level means and standard deviations are weighted
by physician-level numbers of observations. The listed molecules are antibiotics
mainly prescribed for urinary tract infections in Denmark, accounting for 92.5 per-
cent of prescriptions in our sample, Pivmecillinam and Sulfamethizole for 82 percent.
For differences in italic, the null hypothesis of ∆ = 0 is rejected at the five percent
level.
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Table 5 Balance of molecules initially prescribed and use of diagnostics

Ej [y] Ej [y]− Ej [m(x)]

≤ med > med ∆ ≤ 0 > 0 ∆

Molecule initially prescribed:

Pivmecillinam (J01CA08) 0.52 0.59 0.072 0.54 0.58 0.037
(0.20) (0.19) (0.029) (0.20) (0.20) (0.030)

Trimethoprim (J01EA01) 0.02 0.02 -0.002 0.03 0.02 -0.008
(0.04) (0.03) (0.006) (0.05) (0.03) (0.006)

Sulfamethizole (J01EB02) 0.28 0.27 -0.009 0.26 0.28 0.020
(0.19) (0.19) (0.028) (0.18) (0.19) (0.029)

Ciprofloxacin (J01MA02) 0.05 0.02 -0.020 0.04 0.02 -0.021
(0.05) (0.02) (0.006) (0.05) (0.03) (0.006)

Nitrofurantoin (J01XE01) 0.03 0.03 -0.003 0.03 0.03 -0.002
(0.04) (0.04) (0.006) (0.04) (0.05) (0.006)

Use of diagnostics:

Test observations 254 271 17.0 265 259 -6.5
(117.3) (139.5) (19.49) (131.9) (124.9) (19.14)

Urine dipsticks per patient 0.25 0.24 -0.012 0.26 0.24 -0.018
(0.12) (0.10) (0.017) (0.11) (0.11) (0.017)

Microscopy per patient 0.03 0.04 0.017 0.04 0.03 -0.001
(0.07) (0.08) (0.011) (0.08) (0.07) (0.011)

Number of clinics 88 87 96 79

Notes: This table reports mean prescribed molecules and clinics’ usage intensity of
diagnostics for clinics above and below the median (med) of mean bacterial rates Ej [y]
and mean deviations Ej [y]−Ej [m(x)]. Physician-level means and standard deviations
are weighted by physician-level numbers of observations. The listed molecules are
antibiotics mainly prescribed for urinary tract infections in Denmark, accounting for
92.5 percent of prescriptions in our sample, Pivmecillinam and Sulfamethizole for 82
percent. For differences in italic, we reject the null hypothesis of ∆ = 0 at the five
percent level.
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G Model parameter estimates
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Figure 7: Heat map of physician-level estimates for ση and σξ

Notes: To ensure anonymity, the figure shows a heat map of an underlying scatter plot, with a
minimum of five clinics used for local means. Darker areas represent higher clinic density.
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Figure 8: Heat map of physician-level estimates for β and ση

Notes: To ensure anonymity, the figure shows a heat map of an underlying scatter plot, with a
minimum of five clinics used for local means. Darker areas represent higher clinic density.
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Figure 9: Heat map of physician-level estimates for β and σξ

Notes: To ensure anonymity, the figure shows a heat map of an underlying scatter plot, with a
minimum of five clinics used for local means. Darker areas represent higher clinic density.
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H Observed heterogeneity: correlates of σ̂ηj , σ̂ξj , and β̂j

Table 6 Correlation of diagnostic skill estimate σ̂ξj with clinic characteristics

Linear regression for clinical signal noise σ̂ξj
N = 107 (1) (2) (3) (4) (5)

Mean number of physicians 0.01 -0.22
[-1.50, 1.52] [-2.14, 1.69]

Mean age of physicians 2.16 2.14
[-3.70, 8.01] [-3.88, 8.160]

Share of female physicians -0.35 -0.43
[-1.39, 0.69] [-1.53, 0.66]

Dipstick tests per consultation 0.57 0.49 0.83
[-2.10, 3.24] [-2.25, 3.23] [-2.07, 3.74]

Microscopy analyses per consultation 0.44 0.35 0.39
[-2.89, 3.78] [-3.08, 3.77] [-3.29, 4.08]

Patients per physician 0.35 0.32 0.36 -0.54
[-1.93, 2.64] [-1.93, 2.56] [-1.92, 2.64] [-3.49, 2.41]

Constant 1.65 2.70 3.09 2.70 1.86
[-5.10, 8.40] [-0.58, 5.98] [ 0.67, 5.52] [-0.58, 5.99] [-6.38, 10.10]

R2 0.02 0.002 0.001 0.002 0.02

Notes: This table presents coefficients for linear regressions where the outcome is the
physician-level estimate of the patient type signal noise parameter summarized in Table 2.
The correlates are clinic-level physician characteristics scaled at the mean. Mean values
are used for multi-physician clinics. Heteroskedasticity-robust 95% confidence intervals are
reported in brackets.
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Table 7 Correlation of clinical skill estimate σ̂ηj with clinic and physician
characteristics

Linear regression for clinical signal noise σ̂ηj
N = 107 (1) (2) (3) (4) (5)

Mean number of physicians -0.07 -0.05
[-0.22, 0.08] [-0.22, 0.11]

Mean age of physicians 0.82* 0.93*
[-0.07, 1.71] [-0.07, 1.94]

Share of female physicians -0.12 -0.07
[-0.35, 0.11] [-0.24, 0.10]

Dipstick tests per consultation -1.07 -1.07 -1.00
[-3.12, 0.98] [-3.15, 1.00] [-2.98, 0.98]

Microscopy analyses per consultation -0.20 0.00 -0.01
[-0.69, 0.29] [-0.34, 0.34] [-0.41, 0.38]

Patients per physician 0.11 0.20 0.11 -0.16
[-0.23, 0.45] [-0.14, 0.55] [-0.24, 0.45] [-0.65, 0.34]

Constant 0.65* 1.96** 1.10*** 1.96** 1.36*
[-0.10, 1.39] [ 0.25, 3.66 [ 0.82, 1.39] [ 0.24, 3.67] [-0.23, 2.96]

R2 0.04 0.07 0.01 0.07 0.10

Notes: This table presents coefficients for linear regressions where the outcome is the
physician-level estimate of the clinical signal noise parameter summarized in Table 2.
The correlates are clinic-level physician characteristics scaled at the mean. Mean values
are used for multi-physician clinics. Heteroskedasticity-robust 95% confidence intervals
are reported in brackets.

Table 8 Correlation of payoff parameter estimate β̂j with clinic characteristics

Linear regression for payoff parameter β̂j
N = 107 (1) (2) (3) (4) (5)

Mean number of physicians -0.02 -0.02
[-0.05, 0.002] [-0.06, 0.01]

Mean age of physicians -0.10 -0.09
[-0.23, 0.04] [-0.23, 0.04]

Share of female physicians -0.01 -0.01
[-0.04, 0.02] [-0.04, 0.01]

Dipstick tests per consultation 0.04 0.05 0.06
[-0.04, 0.12] [-0.03, 0.13] [-0.03, 0.14]

Microscopy analyses per consultation -0.03 -0.04 -0.03
[-0.11, 0.04] [-0.12, 0.03] [-0.10, 0.05]

Patients per physician 0.02 0.02 0.02 0.01
[-0.04, 0.08] [-0.04, 0.07] [-0.04, 0.08] [-0.07, 0.08]

Constant 0.57*** 0.39*** 0.43*** 0.39*** 0.52***
[ 0.42, 0.72] [ 0.32, 0.47] [ 0.37, 0.49] [ 0.31, 0.47] [ 0.35, 0.69]

R2 0.03 0.01 0.01 0.02 0.05

Notes: This table presents coefficients for linear regressions where the outcome is the
physician-level estimate of the payoff parameter summarized in Table 2. The correlates
are clinic-level physician characteristics scaled at the mean. Mean values are used for
multi-physician clinics. Heteroskedasticity-robust 95% confidence intervals are reported in
brackets.
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I Model fit
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Figure 10: Observed and simulated in-sample moments
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J Machine learning predictions with physician decisions
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Figure 11: Bacterial rate E[yi] and machine learning predictions m(xi)

Notes: Mean bacterial test outcomes relative to predicted risk of bacterial UTI. Spheres and triangles
represent bins of 100 patients sorted by predicted risk.
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K Clinic-level counterfactual outcomes
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(a) CF1: ∆dy = 0
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(b) CF2: σξj = 0
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(c) CF3: σξj = 0 and βj = β̂j + κ1
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(d) CF4: βj = β̂j + κ2

Figure 12: Heat maps of clinic-level counterfactual outcomes

Notes: To ensure anonymity, the figure shows a heat map of an underlying scatter plot, with a
minimum of five clinics used for local means. Darker areas represent higher clinic density.
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L Robustness

L.1 Patients without treatment or tests for minimum 12 weeks

Table 9 Counterfactual policy outcomes

ML redistribution Provide ML-based τi Incentives only
∆dy = 0

dCF = 1[m(x, d) > k]
σξj = 0

σξj = 0

βj = β̂j + κ1
βj = β̂j + κ2

Overall prescribing, ∆d, -7.9 4.1 -6.3 -6.3
in percent of Nd = 10, 215 [-8.4, -7.4] [3.6, 4.7] [-6.7, -5.9] [-6.7, -5.9]

Treated bacterial cases, ∆dy, 0 7.0 0 -4.3
in percent of Ndy = 6, 062 [6.6 ,7.6] [-4.5, -4.0]

Overprescribing, ∆d(1− y), -19.5 -0.2 -15.5 -9.3
in percent of Nd(1−y) = 4, 153 [-20.5 ,-18.2] [-1.0 ,-1.0] [-16.5, -14.5] [-9.9, -8.7]

Mean change in payoffs, 0.066 0.099 0.096 -0.001
1
J

∑J
j=1Wj(dj) [0.058, 0.070] [0.094, 0.103] [0.092, 0.100] [-0.002, 0.000]

Notes: This table reports changes to the status quo in percent across 175 clinics and 27,319 patients. The
left column shows further relevant absolute totals. The risk threshold for prescribing in counterfactual one
is k = 0.478 [0.474, 0.480]. We set κ1 = 0.033 [0.31, 0.36] to obtain ∆dy = 0 in counterfactual three and set
κ2 = 0.016 [0.15, 0.17] to obtain ∆d = −6.3 in counterfactual four. Bootstrapped 95 percent confidence intervals
in brackets.

L.2 Clinics with minimum 200 consultations

Table 10 Counterfactual policy outcomes

ML redistribution Provide ML-based τi Incentives only
∆dy = 0

dCF = 1[m(x, d) > k]
σξj = 0

σξj = 0

βj = β̂j + κ1
βj = β̂j + κ2

Overall prescribing, ∆d, -7.9 3.3 -7.0 -7.0
in percent of Nd = 8, 274 [-8.4, -7.4] [2.8 ,3.9] [-7.5 ,-6.6] [-7.5 ,-6.6]

Treated bacterial cases, ∆dy, 0 7.2 0 -4.9
in percent of Ndy = 5, 094 [6.8 ,7.7] [-5.2 ,–4.5]

Overprescribing, ∆d(1− y), -20.6 -2.9 -18.3 -10.5
in percent of Nd(1−y) = 3, 180 [-21.9, -19.2] [-3.9, -1.9] [-19.4, -17.3] [-11.2, -10.0]

Mean change in payoffs, 0.063 0.111 0.107 -0.001
1
J

∑J
j=1Wj(dj) [0.056, 0.069] [0.106, 0.116] [0.102, 0.111] [-0.002, 0.000]

Notes: Counterfactual changes relative to the status quo in percent across 68 clinics and 21,258 patients.
The left column shows further relevant absolute totals. The risk threshold for prescribing in counterfactual
one is k = 0.50 [0.50, 0.51]. We set κ1 = 0.036 [0.033, 0.038] to obtain ∆dy = 0 in counterfactual three and
set κ2 = 0.019 [0.018, 0.020] to obtain ∆d = −7.0 in counterfactual four. Bootstrapped 95 percent confidence
intervals in brackets.
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