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Abstract

Artificial Intelligence has the potential to improve human decisions in complex environments but

its effectiveness can remain limited if humans hold context-specific private information. Using

the empirical example of antibiotic prescribing for urinary tract infections, we show that full

automation of prescribing fails to improve on physician decisions. Instead, optimally delegating

a share of decisions to physicians, where they possess private diagnostic information, effectively

utilizes the complementarity between algorithmic and human decisions. Combining physician

and algorithmic decisions can achieve a reduction in inefficient overprescribing of antibiotics by

20.3 percent.
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1 Introduction

Professionals and domain experts frequently make costly decisions under time pressure and with

limited information, often processed with a host of biases (Thaler and Sunstein 2009, Kahneman

et al. 2021). Advances in computing power and rapidly increasing data availability have provided

new potential solutions for high-stakes problems with prediction at their core (Kleinberg et al.

2015). Hopes are high that machine learning can help improve human decision-making by offering

a systematic prediction of the ground truth and guiding optimal decisions. Yet, humans often hold

abstract, context-specific information which may be difficult to assess using machine learning (Autor

2015). Employers observe candidates’ soft skills in job interviews, judges learn about defendants’

personalities in face-to-face questioning, and physicians observe patients’ ailments with potentially

complex symptoms. Empirical evidence on the relevance and nature of complementarities between

data-driven and human decisions is scarce but key for guiding policy-making in response to the

economic transformation induced by artificial intelligence.

In this paper, we provide such evidence for a salient case in health care. Antibiotic resistance

is one of the greatest threats to global health (WHO 2012, 2014).1 Because human antibiotic

consumption is considered the main driver of antibiotic resistance, reducing the use of antibiotics is

a prime policy concern (Goossens et al. 2005, Adda 2020). The decision to use an antibiotic involves a

prediction task in determining the cause of a patient’s illness. Physicians collect and interpret clinical

facts including symptoms, point-of-care test results, and maybe patients’ background and medical

data, requiring human judgment and curiosity. On the other hand, machine learning has shown to

be an effective method to elicit predictive information from large-scale data (Agrawal et al. 2018,

Athey 2018). It can exploit systematic patterns in data collected across patients and healthcare

providers such as electronic health records, administrative data, and genomics databases. Yet,

machine learning applications face challenges when crucial, treatment-relevant physician information

is not encoded in a standardized manner and not easily combined with other data. Integrating

physician decisions in algorithmic rules may provide a solution (Agarwal et al. 2023).

The treatment of urinary tract infections (UTI) in primary care, a leading cause for human

antibiotic use (Grigoryan et al. 2014), provides a unique setting to study the potential to reduce

antibiotic use by the means of machine learning-predicted risk. An accurate diagnostic for UTI can
1Worldwide, 4.95 million deaths are estimated to be associated with antibiotic resistance and 1.27 million deaths

are directly attributable (Murray et al. 2022, Laxminarayan 2022). In the US alone, antibiotic-resistant infections are

estimated to cause $20 billion in direct healthcare costs and $35 billion in lost productivity each year (CDC 2013).
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only be provided by analysis of urine samples in a microbiological laboratory outside of primary care

clinics. These laboratory test results arrive with a delay of several days, corresponding to nearly

a full course of antibiotic treatment. Thus, at initial consultations, physicians must decide under

uncertainty whether to prescribe an antibiotic or delay treatment until the test result is known.

Crucially, because ex post positive and negative laboratory results, as well as the initial treat-

ment decisions, are observed, prescription decisions can be evaluated based on the true outcome.

Hence, we avoid the common selective labels problem for the decision of interest (Lakkaraju et al.

2017, Kleinberg et al. 2018a). To achieve this, we restrict our analysis to consultations at which a

laboratory test is acquired. While this restriction may limit the external validity of the quantita-

tive results, which we inspect in robustness checks, our setting provides a unique lens to measure

complementarities between physician and prediction-based decisions.

We first apply a machine learning algorithm, XGboost, to high-dimensional, administrative

data from Denmark to predict the risk of bacterial presence for 48,406 initial consultations. The

outcome is a binary variable indicating when bacteria are isolated in a patient’s urine sample in the

laboratory. The prediction model includes patients’ historical medical outpatient claims, antibiotic

prescriptions, microbiological test results, personal characteristics such as gender, age, employment

information, education, income, civil status, clinic identifiers, past test yield, time indicators, and

more. XGBoost predicts bacterial infections out-of-sample with an area under the ROC curve

(AUC) of 0.72. This prediction quality is comparable with values in the literature, for example,

Mullainathan and Obermeyer (2022) with 0.69 for heart attacks, Kleinberg et al. (2018a) with 0.707

for risk of recidivism, and between 0.56 and 0.83 for predicting antibiotic resistance conditional on

the presence of bacteria and antibiotic prescription in Yelin et al. (2019) and Kanjilal et al. (2020).

The policy problem we analyze involves a trade-off between the social cost of prescribing, i.e.

promoting resistance, and the health benefits of antibiotic treatment. Using an objective function

that reflects this trade-off, we consider policies that reassign antibiotic treatment based on risk

predictions to reduce antibiotic use. Observing that physicians make the fewest errors relative to

machine learning in intermediate ranges of predicted risk, we evaluate rules that delay prescriptions

until test results are available for low predicted risk, prescribe an antibiotic instantly for high

predicted risk, and delegate decisions to physicians for intermediate predicted risk.

Applying this policy, assuming physicians comply, antibiotic use can be reduced by 8.1 percent

without reducing the number of treated patients who suffer from a UTI. The policy can reduce over-

prescribing, prescriptions to non-bacterial cases, by 20.3 percent. In 47.2 percent of consultations,
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the decision would be made by the prediction-based rule, overturning 15.0 percent of the observed

decisions made by physicians. We find that only decision rules that combine machine learning and

human decisions improve outcomes, even with the rich individual-specific data in this setting.

We document that including human decisions in the algorithm is optimal when physicians con-

tribute important diagnostic information not encoded in data. To quantify this contribution, we

compute the difference between machine learning prediction error and physician decision error. This

informational advantage of physicians over machine learning is largest at intermediate ranges of pre-

dicted risk and negative at low and high predicted risk. Correlating this measure with point-of-care

diagnostic claims, we find that physicians’ informational advantage is largest where the use of such

diagnostics is highest. Hence, physicians acquire and interpret important information at the point

of care which is not available to the machine learning algorithm. While information is increasingly

encoded for machine learning, the human informational advantage needs to be quantified to identify

settings in which complementarities exist.

The type of administrative data we employ has been shown to provide similar prediction quality

as when electronic health record data are used, even though they likely contain richer context-specific

information (Zeltzer et al. 2019). Our findings indicate the value of combining administrative data

with context-specific information collected by human experts. Ideally, the two data sources would

be used together but combining them has shown to be a difficult problem in practice for a multitude

of technical and legal reasons (Hsu et al. 2020). Integrating physician decisions, which carries much

of the human-acquired information, can be a promising and pragmatic way to move forward.

We contribute to a growing literature considering prediction problems in management and policy

(Kleinberg et al. 2015). Existing work has studied the potential for machine learning to improve

decisions such as for crime prevention programs (Chandler et al. 2011), hygiene inspections (Kang

et al. 2013), worker productivity (Chalfin et al. 2016), C-sections (Currie and MacLeod 2017), tax

rebate programs (Andini et al. 2018), opioid prescriptions (Hastings et al. 2020), financial stock

analysis (Cao et al. 2021), testing for heart attack (Mullainathan and Obermeyer 2022). Also

focusing on UTI treatment, Ribers and Ullrich (2023) estimate the distribution of physicians’ skills

and preferences determining antibiotic prescribing decisions and Huang et al. (2022) quantify the

value of increasing the scope of data for prediction quality and policy outcomes. In this common

and important health care context, we analyze how treatment decisions may be shared between

human experts and an algorithm using simple policies.

Recent work has focused on algorithms as a substitute for human decisions but the question of
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whether data-driven models can complement human decisions has been investigated at least since

Blattberg and Hoch (1990). As data sets have grown in scale and advances in computing have en-

abled increasingly flexible prediction models, the contribution of human intuition and information is

becoming more nuanced. Valuable complementarities can arise if humans fill crucial remaining gaps

where procedural expertise, subjective evaluations, highly flexible assessments, or domain-specific

knowledge of rare events are required, commonly the case in abstract task-intensive occupations

such as medical care (Autor 2015). Contrary to Agrawal et al. (2018) and Agrawal et al. (2019),

who focus on human judgment that is difficult to encode, we identify context-specific information

humans acquire, which remains difficult to encode, as an important factor for policy design.

The paper is organized as follows. Section 2 provides background information on Danish primary

care and UTI and Section 3 describes our data. Section 4 shows the results of the prediction

algorithm. Section 5 presents the framework for prediction-based policies to improve antibiotic

prescribing. Section 6 presents policy outcomes and Section 7 concludes.

2 Institutional background and treatment of UTI

2.1 Primary healthcare in Denmark

Denmark has several regulations that impact decision-making in primary care. General practition-

ers act as the primary gatekeepers in a universal and tax-financed single-payer health care system.

Every person living in Denmark is allocated to a general practitioner by a list system within a

fixed geographic radius around the home address. General practitioners work as privately owned

businesses but all fees for services are collectively negotiated between the national union of general

practitioners and the public health insurer. Physicians do not generate earnings by prescribing

drugs to patients who have to purchase their prescriptions from local pharmacies. General practi-

tioners are responsible for prescribing approximately 75 percent of the human-consumed systemic

antibiotics in Denmark (Danish Ministry of Health 2017). Pharmacies earn a fixed fee per pro-

cessed prescription regardless of price or other drug attributes, for example, branded versus generic

drugs. Prescription drugs are subsidized but patients co-pay a fraction of the list price. The Danish

market for prescription drugs is highly regulated resulting in low and uniform prices for antibiotics

nationwide, about 100 Danish Kroner (15 US Dollars) per complete treatment.
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2.2 Diagnosis and treatment of UTI

UTI are among the most common types of infections and a leading reason for antibiotic treatment in

primary care (Grigoryan et al. 2014, Gupta et al. 2017). UTIs occur when bacteria, most often Es-

cherichia coli, enter the urethra and infect the urinary tract, the bladder, or kidneys. Left untreated,

they can lead to sepsis and death. The estimated costs to the health care system attributable to

community-acquired UTI amount to $1.6-3.5 billion per year in the US alone (Foxman 2002, Flores-

Mireles et al. 2015). Once diagnosed, the use of antibiotics is indicated by clinical guidelines.2 In

our setting, over 80 percent of UTI-indicated prescriptions are for pivmecillinam, belonging to the

class of penicillins and recommended as a first-line antibiotic for UTI, or sulfamethizole.3

Prevalence of UTI is highest among women. Foxman (2002) reports that nearly half of all women

experience at least one UTI in their lives. Many more subgroups are known to be at increased

risk of UTI, such as children and the elderly, patients with certain conditions such as diabetes or

immunodeficiency, or individuals with underlying urological abnormalities (Foxman 2002). Many

of such subgroups are identifiable in observable data using personal characteristics such as age and

gender or past health care utilization and diagnoses.

UTI symptoms require medical attention. They include dysuria, urinary frequency, urgency,

new-onset incontinence, and pain. Systemic signs of an infection such as fever, shivering, or systemic

unwellness can also occur. Attributing symptoms to UTI is difficult as they are also associated with

other conditions, e.g. sexually transmitted urethritis or vaginitis, noninfectious urethritis, early

pyelonephritis, overactive bladder, benign prostatic hyperplasia, bladder or kidney stones, or even a

bladder tumor (Wilson and Gaido 2004, Gupta et al. 2017, Nik-Ahd et al. 2018, Holm et al. 2021).

Less commonly, UTIs can also be caused by fungi or viruses. Notably, symptoms are difficult to

encode systematically. For example, the assessment of “pain” requires contextual elicitation and

judgment of its nature, severity, location, and chronology. Beyond symptoms, physicians may elicit

contextual information, including behavioral factors, from speaking to patients. The quality and

depth of recording this type of information can vary widely across clinics, patients, and time.

Point-of-care testing such as urinary dipstick and microscopy analysis provides diagnostic results
2See Medicinrådets behandlingsvejledning vedrørende urinvejsinfektioner (https://medicinraadet.dk/media/ucsjy4e4/medicinrådets-

behandlingsvejledning-vedr-urinvejsinfektioner-vers-1-1_adlegacy.pdf) or Urinary Tract Infections

(https://www.mayoclinic.org/diseases-conditions/urinary-tract-infection/symptoms-causes/syc-20353447) by the

Cleveland Clinic, accessed 11/2/2022.
3Less frequently used antibiotics are nitrofurantoin, trimethoprim, amoxicillin, fluoroquinolones, and fosfomycin.
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at the consultation. Both types of diagnostics can have very low specificity, the true negative rate, as

low as 0.41 or sensitivity, the true positive rate, as low as zero (Devillé et al. 2004, Wilson and Gaido

2004, Chu and Lowder 2018). Further analysis can be done by urine culture which takes about one

day. Finally, samples can be sent to a hospital laboratory for a reliable measure of a patient’s true

infection state. Laboratory testing is highly accurate, requires little human judgment, and has been

established as the gold standard for diagnosis. However, test results come with a delay of about

three days (Schmiemann et al. 2010). This test can confirm treatment decisions ex post, ensure full

information is available to adjust treatment later, and provide antibiotic resistance information.

In primary care, no machine learning tools have so far been implemented for the treatment of

UTI. An implementation could be feasible in telemedicine services, pharmacies, or primary care

clinics in a health care system with interconnected IT systems across providers. In 2019, the UK

National Health Service trialed a smartphone app where an antibiotic, nitrofurantoin or trimetho-

prim, could be obtained based on symptom reports and a dipstick result without seeing a physician.4

In the UK study, while symptoms and rapid test results were observed, no patient background data

and no expert physician input could be used. Administered prescriptions could not be evaluated

because the true sickness condition was not assessed. Hence, only the change in prescriptions was

documented, lacking an evaluation of patients’ health outcomes.

3 Danish administrative data and laboratory test results

3.1 Danish national registries

The administrative data provided by Statistics Denmark cover all citizens and residents in Denmark

between January 1st, 2002, and December 31st, 2012. The demographic data from the Danish

Civil Registry (Det Centrale Personregister, CPR) includes gender, age, municipality, immigration

status and place of origin, marriage, and family status. It provides a unique person identifier which

facilitates accurate linkage of patients between Danish national registers. It also includes household

member identifiers which allow us to link the patient’s family and household members including

their demographic and administrative data. We also obtain information on employment (Integrerede
4See Thornley et al. (2020) and https://www.bbc.com/news/uk-england-derbyshire-49031625, accessed on

12/7/2022. In Denmark, pivmecillinam is the recommended first-line antibiotic while nitrofurantoin or sulfame-

thizole should be given where penicillin is clinically unsuitable. See UTI guidelines by the Danish Medical Council at

https://medicinraadet.dk/anbefalinger-og-vejledninger/behandlingsvejledninger/urinvejsinfektioner-uvi, accessed on

12/5/2022.
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Database for Arbejdsmarkedsforskning, IDA) and education (Uddannelseregister, UDDA).

The prescription drug register (Lægemiddeldatabasen, LMDB) contains each individual’s com-

plete purchase history of systemic antibiotics, including the date of purchase, patient and prescrib-

ing physician identifiers, and product information. The hospitalization data (Landspatientregisteret,

LPR) comprise all patient contacts with hospitals, including ambulatory visits. The data include

admission and discharge information, procedures performed, type of hospitalization (ambulatory,

emergency, etc), diagnoses, and the number of bed days. The claims data (Sygesikringsregisteret,

SSR) cover all medical services provided to the population of patients in primary care, including

consultation week, services provided, and physician fees. Primary care providers are identified via

unique clinic identifiers which can be linked to physicians’ personal identifiers (Yderregister, YDER).

3.2 Microbiological laboratory data

Herlev Hospital and Hvidovre Hospital, two major hospitals in Denmark’s capital region covering

a catchment area of roughly 1.7 million people, provided us with test results from their clinical

microbiological laboratories between January 1st, 2010, and December 31st, 2012. The data contain

patient and clinic identifiers as well as information on test type, sample date, arrival date at the

laboratory, result date, isolated bacteria, and antibiotic-specific resistances of isolated bacteria.

The laboratory test data are central because they reveal bacterial presence in a urine test

sample, the outcome we aim to predict. According to the Danish guidelines urinalysis should only

be performed in patients with signs and symptoms of UTI.5 The test procedure takes 3.1 days on

average, during which physicians are uninformed about the test result. Since we know the precise

timing of test acquisitions, prescription purchases, and the test response date, we can determine

physicians’ treatment decisions before being informed about test outcomes.

3.3 Analysis sample

Overall, the data contain 2,579,617 biological samples submitted for testing in the capital region

by both general practitioner clinics and hospitals. Urine samples constitute 477,609 samples out of

which 156,694 are marked as general practitioners by the laboratory. Some clinics submit mainly

specialist fee claims to the health care system. We drop these to ensure the sample includes only

general practitioners. To focus on consultations that constitute a first contact with a physician, we
5See https://medicinraadet.dk/media/ucsjy4e4/medicinrådets-behandlingsvejledning-vedr-urinvejsinfektioner-

vers-1-1_adlegacy.pdf, accessed 11/2/2022.
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exclude observations where a patient received a systemic antibiotic prescription or had a laboratory

test conducted within 4 weeks before the observed test date. In these situations, physicians are

unlikely to hold prior diagnostic information and must prescribe under uncertainty. By considering

such initial consultations, we exclude potentially complicated treatment spells where patients are

tested in later stages. We also avoid patients in long-term treatment, potentially due to severe

antibiotic resistance problems. Additionally, we exclude urine samples collected during pregnancy

as the vast majority of these are mandatory routine checks and do not represent UTI consultations.

The final analysis sample consists of 65,919 initial consultations where a urine sample was sent to

a laboratory for testing from 583 primary care clinics.

3.4 Laboratory test outcomes and prescribing

We consider binary test outcomes that indicate whether bacteria are isolated in patients’ urine

samples and do not focus on specific bacterial species.6 We observe when a test is acquired from

the patient at an initial consultation and the initial prescription decision when a prescription for a

systemic antibiotic is purchased at a pharmacy on the test day or the day after.7

Table 1 shows that the bacterial rate and prescription rate remain stable at 37-39 percent over

the three sample years. This suggests that physicians match antibiotic prescriptions to bacterial

infections very well at the initial consultation. Yet, the prescribing rates conditional on test outcome

show that this is not the case. Physicians only prescribe antibiotics at initial consultations to 61

percent of patients with bacterial infections, implying underprescribing to 39 percent. Conversely,

26 percent of patients with a negative test result receive an antibiotic at the initial consultation,

defined as overprescribing. Hence, the descriptives indicate a potential for improving physician

decisions in treating UTI patients.
6In the policy analysis we describe the distribution of bacterial species to consider potential reasons for disagree-

ments between machine learning and physician decisions. Escherichia coli represent 71 percent of cases in our data.
7We only observe the purchase date of a prescription which might differ from the date the physician provided the

patient with the prescription. Hence, we must define what constitutes an initial prescription and choose to do so

based on the patient purchasing the antibiotic on the day of the test or the following day. Defining initial prescriptions

as any antibiotic purchased between the test date and the date the laboratory answer is provided to the physician

does not qualitatively change the result of our analysis. We choose the shorter definition of an initial prescription

for our main analysis as we want to exclude potential prescriptions that result from unobserved additional contact

between the patient and the physician while awaiting the test result.

8



Table 1 Summary statistics for laboratory tests and initial antibiotic prescribing.

All tested Positive test Negative test

N
Bacterial

rate
Prescribing

rate N
Prescribing

rate N
Prescribing

rate

2010 17,513 0.37 0.39 6,411 0.60 11,102 0.27

2011 21,237 0.39 0.39 8,305 0.60 12,932 0.25

2012 27,169 0.39 0.39 10,510 0.61 16,659 0.25

Total 65,919 0.38 0.39 25,226 0.61 40,693 0.26

4 Machine learning and physician decisions

4.1 Predicting bacterial UTI using administrative data

We use the machine learning algorithm XGBoost (Hastie et al. 2009, Chen and Guestrin 2016)

to relate patient i’s covariates xi to the binary laboratory bacterial test outcome, yi. XGBoost

is an implementation of the extreme gradient boosted regression tree method which provides a

non-parametric risk prediction. The vector xi contains 1,557 patient-specific covariates which may,

in principle, be observable to the physician at the time of consultation.8 The covariates in the

prediction model include each patient’s past medical outpatient claims, antibiotic purchases, mi-

crobiological test results, a rich set of characteristics such as gender, age, employment, education,

income, civil status and more, as well as the same information on each individuals’ household mem-

bers. To account for clinic-specific practice styles, e.g. in sending test samples to the laboratory,

we also include clinic identifiers, clinic-level past average resistance, and regional prescribing rates.

We use data from 2010 for hyperparameter tuning and create out-of-sample predictions for

January 2011 to December 2012. Table 4 in Appendix A.1 reports the tuning results. To use the

most recent historical data relative to a consultation, we retrain the XGBoost algorithm at a monthly

frequency. Figure 4 in Appendix A.2 illustrates the data partitions used for hyperparameter search,

training, and out-of-sample predictions. Table 5 in Appendix A.3 shows that sample sizes, bacterial

and prescribing rates, risk predictions, and out-of-sample AUC are stable across partitions.

We report three measures of predictor importance for XGBoost – gain, frequency, and cover –

in Figure 5 and Table 6 in Appendix A.4. Across these measures, age, gender, clinic identifier, and

recent antibiotic prescriptions are among the top 30 predictors reported in Table 6 in Appendix
8Out of the 1,557 covariates 1,038 are categorical variables that are transformed into dummy variables for each

category. The final number of covariates for XGBoost is 12,727.
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A.5. Further important predictors include a patient’s most recent antibiotic resistance results,

clinic-specific resistance levels, regional prescription intensity, hospital stays, as well as a patient’s

education, immigration status, and origin country. While many plausible narratives may relate

these predictors to bacterial outcomes, machine learning algorithms do not have causal content and

so we refrain from further interpretation.

The AUC is 0.721 for the risk predictions in the years 2011 and 2012 with the associated ROC

curve reported in Figure 6 in Appendix A.6. This AUC value falls in the ranges of prediction

quality in the literature, for example Mullainathan and Obermeyer (2022) with 0.69 for heart

attacks, Kleinberg et al. (2018a) with 0.707 for risk of recidivism, and between 0.56 and 0.83 for

predicting antibiotic resistance conditional on the presence of bacteria in Yelin et al. (2019) and

Kanjilal et al. (2020).

Figure 1 shows machine learning predicted risk, m(xi), and test outcomes for all out-of-sample

test observations. We sort all patients by their predicted risk and compute average bacterial out-

comes for consecutive bins of 100 patients. One bin is represented by one circle. Outcomes are

close to the 45-degree line throughout the risk distribution, showing that the algorithm on average

correctly predicts bacterial risk.

Our implementation is standard with the exception that we cannot split our data randomly into

training and out-of-sample partitions using k-fold cross-validation. In practical applications, the

prediction function must be constructed at or before the clinical consultation using historical data

only. Splitting the data randomly could lead to spill-overs across time as past outcomes may be

predicted using a model trained on future observations. To verify that our monthly updating of

XGBoost does not result in overfitting, we also generate risk predictions for 2011 and 2012 training

XGBoost exclusively on 2010 data. Even though we forego the use of increasing amounts of training

data over time, this static approach results in an out-of-sample AUC of 0.709, only slightly below

the value achieved using the main procedure.

A further potential source of overfitting may be that XGBoost recovers overly flexible conditional

expectation functions on high-dimensional data. To insure against this risk of overfitting and inspect

the relevance of model uncertainty, we reproduce our prediction exercise using parametric logistic

LASSO. Using the same tuning and training procedure as described for XGBoost, we obtain an

out-of-sample AUC of 0.707, which is just below the value achieved using XGBoost.9

Finally, while we cannot verify if the quality of machine learning predictions extrapolates be-
9The optimal tuning parameter lambda is 0.0087 on the hyperparameter folds.
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Figure 1: Laboratory test outcomes relative to predicted risk of bacterial UTI. Circles

represent bins of 100 patients sorted by predicted risk.

yond our sample, we can provide a partial assessment. Figure 7 (a) in Appendix A.7 shows the

distribution of risk predictions for a subset of the general population sampled on a random day with

no consultation.10 This distribution resembles the risk distribution in the analysis sample for pa-

tients without a bacterial infection. A notable difference is the larger density at low-risk predictions

for the random population sample, which is driven by a larger proportion of men who on average

exhibit lower risk of UTI. Analogously, Figure 7 (b) in Appendix A.7 shows the distribution of risk

predictions for patients who were prescribed a UTI-indicated antibiotic but are not in our analysis

sample because no laboratory sample was collected.11 The distribution of risk predictions closely

resembles the analysis sample for patients with a bacterial infection. These observations suggest
10The sample is drawn such that it has the same number of observations as the analysis sample for y = 0.
11The sample is drawn such that it has the same number of observations as the analysis sample for y = 1.
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that the prediction model may be informative for patients outside of the analysis sample.

4.2 Bacterial rate conditional on predicted risk and physician prescribing

Motivated by the trade-off between the benefit and the social cost of antibiotic use, we focus on the

binary choice of prescribing an antibiotic and not on molecule choice. Figure 2 splits the sample

into patients who received a prescription (treated) and those who did not receive a prescription

(non-treated) at the initial consultation. Again, each group is sorted by predicted risk and arranged

into bins of 100 patients. Hence, the figure shows test outcomes versus risk predictions conditional

on antibiotic prescribing prior to receiving test results. Conditional on predicted risk, patients

with an initial prescription have higher bacterial rates than patients without an initial prescription.

Hence, physicians appear to have diagnostic information that the machine learning algorithm does

not capture. For example, point-of-care testing and symptom assessment provide instant, albeit

imperfect, diagnostic information that is not included in administrative data. The difference in

bacterial rates is largest for intermediate predicted risk, which represents the set of patients for

which machine learning predictions are the least informative.

Even though physicians appear to have important private diagnostic information, prescriptions

often do not match the true test outcomes. On average, 39.6 percent of patients who received

an antibiotic did not have a bacterial infection and the overprescribing rate varies drastically with

predicted risk. Among the 100 treated patients with the lowest predicted risk, the leftmost triangle

in Figure 2, only 27 patients had a bacterial infection resulting in 73 percent overprescribing. In

contrast, 87.5 patients had a bacterial infection among the 100 treated patients with the highest

predicted risk. Among the untreated, 25.1 percent of patients have bacterial infections. The error

rate again varies with predicted risk showing an increasing bacterial rate for the non-treated patients

as predicted risk increases. Among the 100 non-treated patients with the highest predicted risk, the

rightmost circle on Figure 2, 81 patients had a bacterial infection. These observations indicate that

the match between prescriptions and bacterial infections can be improved at the extremes of the

risk prediction range where machine learning classification accuracy is high and physician decisions

reflect considerable over- and underprescribing.
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Figure 2: Laboratory test outcomes relative to predicted risk of bacterial UTI con-

ditional on antibiotic prescribing prior to receiving test results. Circles and triangles

represent bins of 100 patients sorted by predicted risk conditional on treatment.

5 Designing policies to improve antibiotic prescribing

5.1 Payoff from antibiotic prescribing

Our investigation centers on antibiotic prescription decisions for suspected UTI made during initial

consultations in general practice clinics. Specifically, we focus on these first visits of sickness spells

where urine samples were collected for laboratory testing. Test results enable the validation of

initial treatment decisions as well as subsequent treatment that aligns with the patient’s initially

unobserved sickness state. However, the delay in treatment during the waiting period, 3.1 days

on average, incurs a substantial cost for patients with bacterial infections, prompting physicians

to consider initiating antibiotic treatment at the initial consultation before receiving test results.

13



Conversely, physicians often hesitate to prescribe antibiotics under uncertainty, as antibiotics only

exhibit curative effects for bacterial infections, and as all antibiotic consumption advances antibiotic

resistance regardless of the patient’s infection status. Thus, physicians grapple with a vital trade-off

during the initial consultation: weighing the potential curative benefits of antibiotics against the

always-present cost of promoting antibiotic resistance (Adda 2020). To formalize this trade-off,

we define the realized payoff as a function of the prescription decision d ∈ {0, 1} during an initial

consultation:

π(d; y) = −αy(1− d)− βd, (1)

where y ∈ {0, 1} indicates whether the patient has a UTI. The parameter α > 0 is the relative

weight on the patient’s sickness cost while awaiting the test result and the parameter β > 0 reflects

the relative resistance-promoting cost of prescribing.12

5.2 Algorithm-supported prescription policies

We denote algorithm-supported counterfactual prescribing policy by δi. For the set of patients

I, a policy can be evaluated using the aggregate payoff differences between the counterfactual

prescription rule and the observed prescription choices:

Π =
∑
i∈I

[π(δi; yi)− π(di; yi)] = α
∑
i∈I

yi(δi − di) − β
∑
i∈I

(δi − di). (2)

The first term on the right-hand side of equation (2) is the change in the number of prescribed

antibiotics to patients with a bacterial infection, while the second term is the change in overall

antibiotic use. We aim to evaluate policies motivated by the broad public health objective of

reducing antibiotic use. However, the policymaker’s preferred outcome depends on α and β which

are, in general, unknown. To make progress, we adopt an approach inspired by Kleinberg et al.

(2018a) and focus on counterfactual prescribing that keeps the number of treated bacterial infections
12An alternative payoff function that includes the potential social cost of a follow-up prescription to a patient who

suffers from a bacterial UTI but did not receive antibiotic treatment at the initial consultation has the following form:

π̃(d; y) = −αy(1− d)− βd− β(1− ρ)y(1− d)

= −(α+ β(1− ρ))y(1− d)− βd

= −α̃y(1− d)− βd,

where d ∈ (0, 1) is the prescription decision at the initial consultation, y ∈ (0, 1) is the sickness state and ρ ∈ (0, 1)

is the spontaneous natural recovery rate that occurs while the patient awaits the test result. It can be seen that we

arrive at a similar expression to equation (1) with the only difference being the interpretation of the sickness cost.
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unchanged and minimizes overall antibiotic use.13 Observing equation (2), this approach guarantees

an increase in payoffs for any α and β.

We introduce and evaluate two types of prescription policies. First, we explore full automation,

that is a complete replacement of physician prescribing by an algorithm, entailing policies of the

form:

δ(m(xi), k) =


0 if m(xi) ≤ k,

1 if k < m(xi).

(3)

Here, m(xi) is the machine learning risk prediction for patient i based on observables xi, and k

is a threshold parameter. The resulting prescription rules become step functions, where prescrip-

tions are never given below the cut-off k and always given above. Appendix B.1 shows that these

policies are optimal when E(y) is increasing in the risk predictions. Inserting these rules into equa-

tion (2) combined with the aim to lower antibiotic use while maintaining the number of treated

UTIs unchanged results in the following minimization problem:

min
k

∑
i∈I

δi(k)− di s.t.
∑
i∈I

yi(δi(k)− di) = 0. (4)

Full automation cannot make use of any diagnostic information expert physicians hold. Yet,

Figure 2 in Section 4.2 indicates that physician decisions hold important information conditional on

machine learning-predicted risk. Hence, we investigate a second type of policy where the algorithm

delegates a subset of decisions to physicians, implemented by prescription rules of the form:

δ(m(xi); kL, kH) =


0 if m(xi) ≤ kL,

di if kL < m(xi) < kH ,

1 if kH ≤ m(xi),

(5)

where (kL, kH) are threshold parameters subject to 0 ≤ kL ≤ kH ≤ 1. These rules postpone

prescribing until test results are available for patients with low predicted risk, m(xi) ≤ kL, assign

antibiotic prescriptions to patients with high predicted risk, kH ≤ m(xi), and delegate decisions

to physicians for intermediate risk, kL < m(xi) < kH . Appendix B.2 shows that these policies are
13This specific policy objective also minimizes overprescribing since the change in prescribing to non-UTI cases can

be written generally as ∑
i∈I

δi(1− yi)−
∑
i∈I

di(1− yi) =
∑
i∈I

(δi − di)−
∑
i∈I

yi(δi − di),

which equals the change in antibiotic use when the change in treated UTI, the last term above, is zero.
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optimal when E(y|d) is increasing in the risk predictions for both d = 1 and d = 0.14 Inserting these

rules in equation (2) combined with the aim to lower antibiotic use while maintaining the number

of treated UTIs unchanged results in the following minimization problem:

min
kL,kH

∑
i∈I

δi(kL, kH)− di s.t.
∑
i∈I

yi(δi(kL, kH)− di) = 0. (6)

6 Policy outcomes

We evaluate counterfactual policy outcomes relative to observed levels during the years 2011 and

2012. The 95 percent confidence intervals are derived by recomputing policy results across 1000

bootstrap samples while keeping patient risk predictions and policy parameters constant.

6.1 Full automation based on machine learning predictions

Table 2 displays counterfactual policy outcomes in the absence of physician input. In this scenario,

the optimal policy administers antibiotic prescriptions to all patients with a predicted risk equal to

or higher than 0.405 and delays for those with a risk prediction below. This results in the reversal of

39.7 percent of observed physicians’ decisions. Notably, attempting to maintain a constant number

of treated UTI cases hinders the reduction of antibiotic use when prescribing is solely algorithmically

based. Instead, counterfactual antibiotic usage experiences a 7.1 percent increase, accompanied by

a 17.9 percent rise in overprescribing.15 These findings emphasize the need to integrate machine

learning predictions with physician expertise for effective policy enhancements, even when high-

dimensional individual-specific data is employed in the generation of patient risk predictions.

6.2 Combining machine learning predictions and physician decisions

Table 3 displays outcomes achieved through the synergy of machine learning predictions and physi-

cian delegation. The optimal policy parameters, set to maximize the reduction in antibiotic use
14An alternative policy could include the physician’s decision as a predictor in the machine learning algorithm

combined with prescription rules using a single threshold. While allowing more flexible combinations of physician

decisions with other variables in the prediction algorithm, such an implementation would involve higher physician

effort because her decision would be a required input at every consultation. Huang et al. (2022) use such a rule and

find results similar to the policy we consider.
15Similar policy outcomes are obtained using LASSO predictions as reported in Table 7 in Appendix C. The lower

prediction quality achieved by LASSO results in an increase in antibiotic use by 11.3 percent and an increase in

overprescribing by 28.7, while the share of overruled physician decisions of 41.2 is close to the XGBoost results.
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Table 2 Counterfactual outcomes for 2011 and 2012, full automation

k 0.405

Change in treated UTI, in % 0.0 [ −1.7, 1.8]

Change in antibiotic use, in % 7.1 [ 5.6, 8.6]

Change in overprescribing, in % 17.9 [ 15.1, 20.8]

Physician decisions overruled, in % 39.7 [ 39.3, 40.2]

95% confidence intervals are based on 1000 bootstrap samples of 2011 and 2012 where machine

learning predictions and the policy parameter k remain fixed.

without changing the number of treated UTI patients, are kL = 0.320 and kH = 0.601. Accord-

ingly, antibiotic treatment is algorithmically delayed for patients with risk predictions below 0.320

and algorithmically assigned when risk predictions exceed 0.601. Within the middle-risk range, pre-

scription decisions are delegated to physicians. This approach results in an 8.1 percent reduction in

overall antibiotic use and a 20.3 percent decrease in overprescribing relative to observed decisions.

Physicians’ decisions are overruled and reversed in 15.0 percent of cases, with 52.8 percent of all

consultations delegated to physicians.16

We provide three further sets of results that are informative for considering a potential implemen-

tation. First, even though we follow the literature in how we evaluate policy outcomes (Kleinberg

et al. 2015, 2018a, Currie and MacLeod 2017, Mullainathan and Obermeyer 2022), parameters kL

and kH would need to be fixed ahead of time in an actual implementation. In Appendix D, we show

that it is feasible to obtain our results by sufficiently frequently updating policy parameters. Sec-

ond, we focus on reducing antibiotic use without decreasing the number of treated UTI, but other

objectives may be desirable. In Appendix E, we show outcomes for the complete set of objectives

policy-makers may define with respect to antibiotic use and the number of treated UTI. Finally, in

Appendix F, we show how group fairness can be achieved by conditioning the policy objective on

observable patient characteristics, but at the cost of some reductions in overall efficiency gains.17

16Table 8 in Appendix C reports results based on LASSO predictions, demonstrating similar policy outcomes.

The slightly lower prediction quality achieved by LASSO results in an almost ten percentage points larger share of

decisions delegated to physicians and a smaller overall reduction in antibiotic use at 7.0 percent. Our qualitative

findings do not appear to depend on the choice of prediction algorithm.
17An additional concern might be omitted-payoff bias (Kleinberg et al. 2018a). First, the policy may give antibiotics

to high-risk patients who would not be treated even with a certain presence of bacteria. Of all patients with positive

test results to whom the policy assigns an antibiotic but physicians did not, 71.8 percent receive an antibiotic after

the test result is known. Given an estimated spontaneous recovery rate of 24 percent (Ferry et al. 2004), decisions
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Table 3 Counterfactual outcomes for 2011 and 2012, optimal

delegation

kL 0.320

kH 0.601

Change in treated UTI, in % 0.0 [ −1.0, 1.0]

Change in antibiotic use, in % −8.1 [ −8.9, −7.2]

Change in overprescribing, in % −20.3 [−21.7,−18.8]

Physician decisions overruled, in % 15.0 [ 14.7, 15.3]

Patients delegated to physicians, in % 52.8 [ 52.3, 53.3]

Consultations 48, 406

UTIs 18, 815

Treated UTIs 11, 402

Antibiotic prescriptions 18, 872

Overprescribing 7, 470

95% confidence intervals are based on 1000 bootstrap samples of 2011 and 2012 where

machine learning predictions and the policy parameter (kL, kH) remain fixed.

6.3 Physician private diagnostic information

The complementarity between physician decisions and machine learning risk predictions is apparent

from the superior performance of the policy with optimal delegation over full automation. In this

section, we take a closer look at physician private information as a potential factor contributing

to physician performance. We focus on one main source of private information: in-house diagnos-

tic testing in the form of rapid point-of-care dipstick tests and microscopy analysis. Outcomes of

in-house diagnostic tests conducted during these consultations are typically not encoded in admin-

istrative data, preventing their use in training algorithmic risk predictions. However, we observe

the utilization of dipstick and microscopy diagnostics during consultations which we can relate to a

measure of physicians’ private information.

We define private diagnostic information as the difference between machine learning prediction

implemented by the policy resemble physician choices under full information. Second, physicians may wait for

antibiotic resistance information before prescribing. For E. coli bacteria, the predominant cause of UTI, Table 14 in

Appendix G shows small differences in resistance for high-risk patients, conditional on the decision to prescribe or

wait. Quantifying the benefits of resistance predictions in primary care is a promising avenue for further research.
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errors, |yi −m(xi)|, and physician prescription errors, |yi − di|, which yields

ιi = |yi −m(xi)| − |yi − di| = (di −m(xi))yi + (m(xi)− di)(1− yi). (7)

This measure represents physicians’ diagnostic information relative to information recovered by

machine learning predictions. The left panel of Figure 3 shows the distribution of private diagnostic

information ιi for bins of 100 patients sorted on predicted risk. In line with our discussion of over-

and under-prescribing, private information follows an inverted U-shape with low information in the

low- and high-risk range but high private information in the intermediate-risk range.
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Figure 3: Physician private information relative to machine learning predictions (left)

and the dipstick and microscopy diagnostic rate (right) as a function of predicted risk.

The right panel of Figure 3 shows the dipstick and microscopy rate across the risk range. On

average, a dipstick diagnostic is used in 72 percent and microscopy in 13 percent of all consultations.

Physicians perform more diagnostic tests at medium levels of predicted risk, where physicians have

smaller decision error rates compared to algorithmic decisions. This observation suggests that

diagnostic tests at the point of care are an important source of private diagnostic information.

In typical health care settings, expert decision-makers hold context-specific private information

beyond the reach of machine learning, as measured by ιi. In practice, multiple factors complicate

the use of such information, including privacy concerns, legal considerations, a lack of standardiza-

tion in diverse provider IT systems, inconsistencies in reporting, and simply an absence of (symp-

tom) documentation. Implementing algorithmic decision rules that allow for delegation to human

decision-makers, where they hold important private information, provides a way to overcome this

challenge.
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6.4 Robustness to sample selection

Our analysis sample is selected in the sense that initial consultations are only included if a laboratory

test was made. Suppose physicians only send urine samples in for laboratory testing when they have

systematically high (low) private information. In that case, our results may represent only an upper

(lower) bound of what an algorithm with delegation would achieve in the general population of initial

UTI consultations. We assess the robustness of our results to test selection using two approaches.

In the first, we make use of the cross-clinic variation in the propensity to use a laboratory test.

We measure test intensity for each clinic by dividing the clinic’s number of laboratory tests by its

number of initial UTI consultations.18 Figures 11 and 12 in Appendix H show the counterfactual

reduction in antibiotic use conditional on varying test intensities for both types of policies. Figure 13

in Appendix H the associated sample sizes. The solid line shows results for all samples from clinics

above or equal to the testing intensity threshold. The dashed line shows results for all samples from

clinics below the threshold. Across sub-samples of clinics with varying test intensities, the policy

results are close to our main results and their confidence intervals largely overlap.

In the second robustness check, we evaluate the algorithmic prescription policy on the random

sample of the healthy general population as well as on the population of patients with UTI-indicated

prescriptions without laboratory testing described in Section 4.1.

In the general population, one percent of all hypothetical consultations have a predicted risk

above kH = 0.601 and, hence, would include an antibiotic prescription in the counterfactual policy.

This false positive rate is significantly smaller than the share of antibiotics given for non-UTI cases

in our main sample, where 5.6 percent of consultations have a predicted risk above kH . Conversely,

among patients with UTI-indicated prescriptions without laboratory testing, 15.2 percent have a

predicted risk below kL = 0.320. The policy would delay antibiotic prescribing for these patients.

This hypothetical false negative rate of 15.2 percent is comparable to the share of 17.7 percent of

patients with a bacterial infection in our main sample with predicted risk below kL.

These results suggest that potential sample selection is a limited threat to our results.
18Even though we do not directly observe UTI consultations when no laboratory test was made, we can approximate

them by observing claimed rapid diagnostic tests, with at least one being utilized in nearly all initial UTI consultations.
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7 Conclusion

The quality of prediction algorithms and available data are improving at a rapid pace. In this paper,

we document the complementary role of machine learning methods for decision-making in a typical

context of primary health care provision. We show that decision rules based on machine learning

predictions using administrative data may provide a path to improve antibiotic prescribing. Antibi-

otic prescribing has important societal implications due to increasing antibiotic resistance driven

by inefficient antibiotic use. While counterfactual policies based on machine learning predictions

alone do not deliver improvements, antibiotic use can be reduced by delegating decisions between

physicians and machine learning where each is most certain. Systems should therefore be designed

with the decision-improving input human experts can provide in mind.

We consider the specific case of UTI in primary care in Denmark, a country with a record of low

antibiotic use (Goossens et al. 2005). Relating the potential reductions in prescribing to the national

action plan initiated by the Danish government in 2017, which aimed to reduce overall antibiotic

prescribing by one-third within three years (Danish Ministry of Health 2017), the reduction of 8.1

percent would achieve one-fourth of this goal. While our analysis may be challenging to implement

in other countries due to the lack of linked data, we suspect the potential reductions we find present

a lower bound of what may be achievable in other institutional settings. One limitation is that

we consider only initial consultations in which a laboratory test was used. This restriction enables

us to observe the ground truth irrespective of physicians’ initial treatment decisions, allowing us

to evaluate physicians’ decisions. We provide evidence that our results may not be limited to this

specific sample but further research is needed on new data from varying contexts.

While we focus on human-AI complementarity for decision outcomes, the considered policy

may also help increase productivity. Because a share of decisions does not require human input,

physicians and patients may save time and effort. These valuable resources may instead be used on

more productive physician-patient interactions and other diagnostic tools at the point of care.

One promising avenue for further research is the analysis of experts’ behavioral reactions to

prediction-based policies. For example, physicians’ incentives to exert effort in gathering information

are likely to change or they may attempt to conform to the decisions made by the algorithm. Such

potential strategic reactions by human decision-makers can affect policy outcomes and call for careful

evaluation of interventions in the field.
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Appendices

Appendix A Machine learning

A.1 Hyperparameters

Table 4 Top 5 hyperparameter search results

Rank Rounds Learning rate Tree depth Avg. AUC

1 446 0.04 3 0.69997

2 353 0.05 3 0.69956

3 604 0.02 4 0.69949

4 434 0.04 4 0.69932

5 739 0.03 3 0.69913

We restrict the hyperparameter search space to the learning rate,

the number of boosting rounds and the tree depth. The AUC is

averaged over the three hyperparameter partitions.

A.2 Overview of machine learning data partitions

2010 2011 2012 2013

Partitions:
-3
-2
-1

1
2
3
4
5
6...

24

Hyperparameter tuning

Out-of-sample risk predictions

Training on historical patient data
Prediction of test outcomes

Figure 4: Outline of the data partitions used for hyperparameter tuning as well as the

month-by-month progressing training and out-of-sample prediction partitions
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A.3 Data partitions

Table 5 Summary statistics for data partitions

Training Prediction

Partition N E[y] E[d] E[d|y=1] E[d|y=0] N E[m(x)] E[y] E[d] E[d|y=1] E[d|y=0] AUC

-3 12,867 0.37 0.39 0.61 0.27 1,618 0.37 0.39 0.58 0.27

-2 14,485 0.37 0.39 0.60 0.27 1,705 0.37 0.38 0.60 0.26

-1 16,190 0.37 0.39 0.60 0.27 1,323 0.36 0.42 0.62 0.30

1 17,513 0.37 0.39 0.60 0.27 1,755 0.36 0.36 0.37 0.58 0.25 0.71

2 19,268 0.37 0.39 0.60 0.27 1,510 0.37 0.37 0.38 0.59 0.26 0.73

3 20,778 0.37 0.39 0.60 0.27 1,811 0.37 0.38 0.37 0.57 0.25 0.71

4 22,589 0.37 0.39 0.60 0.26 1,413 0.37 0.40 0.40 0.60 0.27 0.70

5 24,002 0.37 0.39 0.60 0.26 1,864 0.38 0.40 0.37 0.55 0.24 0.71

6 25,866 0.37 0.39 0.60 0.26 1,753 0.40 0.41 0.38 0.58 0.24 0.73

7 27,619 0.37 0.39 0.59 0.26 1,257 0.41 0.41 0.45 0.68 0.29 0.69

8 28,876 0.37 0.39 0.60 0.26 1,936 0.40 0.40 0.38 0.61 0.23 0.70

9 30,812 0.38 0.39 0.60 0.26 2,092 0.39 0.39 0.40 0.62 0.26 0.72

10 32,904 0.38 0.39 0.60 0.26 2,027 0.39 0.39 0.40 0.61 0.26 0.70

11 34,931 0.38 0.39 0.60 0.26 2,166 0.39 0.39 0.37 0.58 0.24 0.71

12 37,097 0.38 0.39 0.60 0.26 1,653 0.39 0.41 0.40 0.61 0.25 0.72

13 38,750 0.38 0.39 0.60 0.26 2,244 0.40 0.39 0.39 0.61 0.24 0.74

14 40,994 0.38 0.39 0.60 0.26 1,914 0.40 0.38 0.37 0.62 0.23 0.72

15 42,908 0.38 0.39 0.60 0.26 2,202 0.39 0.36 0.36 0.59 0.24 0.71

16 45,110 0.38 0.39 0.60 0.26 1,683 0.40 0.40 0.41 0.63 0.25 0.73

17 46,793 0.38 0.39 0.60 0.26 2,064 0.40 0.37 0.38 0.60 0.25 0.74

18 48,857 0.38 0.39 0.60 0.26 2,410 0.39 0.38 0.38 0.59 0.26 0.73

19 51,267 0.38 0.39 0.60 0.26 1,645 0.41 0.43 0.44 0.65 0.28 0.72

20 52,912 0.38 0.39 0.60 0.26 2,759 0.40 0.40 0.41 0.62 0.27 0.72

21 55,671 0.38 0.39 0.61 0.26 2,506 0.38 0.40 0.39 0.60 0.25 0.73

22 58,177 0.38 0.39 0.61 0.26 2,770 0.39 0.39 0.40 0.62 0.27 0.72

23 60,947 0.38 0.39 0.61 0.26 3,018 0.39 0.37 0.37 0.60 0.24 0.74

24 63,965 0.38 0.39 0.61 0.26 1,954 0.39 0.39 0.41 0.62 0.27 0.73
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A.4 Predictor importance
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Figure 5: Average gain, cover and frequency over the 24 monthly XGBoost models.

Gain, cover, and frequency provide measures of predictor importance (Chen et al. 2022). Variables

in Figure 5 are listed by groups based on their administrative data sources:

(i) patient demographics, test timing and assigned physician identifier
(ii) patient prescriptions and assigned physician’s average antibiotic use
(iii) patient laboratory tests and assigned physician’s average test results
(iv) patient hospitalizations
(v) patient primary care claims
(vi) Household characteristics
(vii) Household member prescriptions
(viii) Household member laboratory tests
(ix) Household member hospitalizations
(x) Household member primary care claims
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A.5 Top 30 predictors by gain, cover, and frequency and gain

Table 6 Top 30 predictors by gain, cover, and frequency

Sorted by gain Sorted by cover Sorted by frequency

Predictor Group E[gain] Predictor Group E[cover] Predictor Group E[frequency]

1 Gender (i) 0.1572 Age (i) 0.0652 Age (i) 0.0518

2 Age (i) 0.1482 Clinic identifier (i) 0.0574 Clinic identifier (i) 0.0296

3 Resistance to J01XE01 (1) (iii) 0.0588 Gender (i) 0.0433 Gender (i) 0.0261

4 Resistance to J01CA11 (1) (iii) 0.0446 Prescription ATC code (1) (ii) 0.0221 Prescription ATC code (1) (ii) 0.0125

5 Immigration status (i) 0.0321 Immigration status (i) 0.0208 GP 6 months mean resistance (iii) 0.0123

6 Resistance to J01DD13 (1) (iii) 0.0274 Prescription ATC code (3) (ii) 0.0155 Immigration status (i) 0.0118

7 Clinic identifier (i) 0.0197 Prescription ATC code (2) (ii) 0.0146 GP all previous mean resistance (iii) 0.0118

8 Days since prescription (4) (ii) 0.0159 GP all previous mean resistance (iii) 0.0125 Prescription ATC code (3) (ii) 0.0107

9 Prescription ATC code (1) (ii) 0.0147 GP 1 year mean resistance (iii) 0.0122 GP 1 year mean resistance (iii) 0.0086

10 Resistance to J01CA11 (2) (iii) 0.0138 GP 6 months mean resistance (iii) 0.0116 Days since prescription (1) (ii) 0.0086

11 GP all previous mean resistance (iii) 0.0133 Origin country (i) 0.0096 Prescription ATC code (2) (ii) 0.0083

12 GP 6 months mean resistance (iii) 0.0115 Prescription ATC code (4) (ii) 0.0095 Days since lab test (1) (iii) 0.0075

13 Days since prescription (3) (ii) 0.0104 Education (i) 0.0092 Days since lab test (1) (iii) 0.0068

14 GP 1 year mean resistance (iii) 0.0091 Weeks since specialist (28) (iv) 0.0082 Municipal DID of J01CF01 (ii) 0.0065

15 Days since prescription (2) (ii) 0.0090 Resistance to J01DD13 (1) (iii) 0.0081 Municipal DID of J01FA01 (ii) 0.0062

16 Prescription ATC code (2) (ii) 0.0088 Hospital bed days (7) (iv) 0.0079 Prescription ATC code (4) (ii) 0.0061

17 Days since prescription (1) (ii) 0.0076 Municipal DID of J01CF01 (ii) 0.0079 Municipal DID of J01EB02 (ii) 0.0058

18 Resistance to J01DD13 (2) (iii) 0.0071 Resistance to J01CA11 (1) (iii) 0.0076 Municipal DID of J01AA07 (ii) 0.0057

19 Prescription ATC code (3) (ii) 0.0065 Claim of non-GP specialist (21) (v) 0.0075 Education (i) 0.0056

20 Prescription indication (2) (ii) 0.0063 Resistance to J01XE01 (1) (iii) 0.0074 Days since prescription (3) (ii) 0.0054

21 Days since prescription (7) (ii) 0.0063 Municipal DID of J01FA01 (ii) 0.0072 Origin country (i) 0.0054

22 Prescription ATC code (4) (ii) 0.0057 Claim of non-GP specialist (4) (v) 0.0072 Weeks since specialist (28) (v) 0.0050

23 Resistance to J01XE01 (2) (iii) 0.0055 Hospital diagnose (9) (iv) 0.0072 Claim of non-GP specialist (4) (v) 0.0048

24 Prescription indication (3) (ii) 0.0055 Employment industry (i) 0.0071 Mother’s age (vi) 0.0048

25 Prescription indication (4) (ii) 0.0052 Prescription ATC code (8) (ii) 0.0067 Weeks since specialist (30) (v) 0.0048

26 Resistance to J01MA02 (1) (iii) 0.0046 Prescription ATC code (7) (ii) 0.0066 Claim of non-GP specialist (21) (v) 0.0047

27 Weeks since GP visit, family (8) (x) 0.0045 Days since hospital, family (8) (ix) 0.0065 Hospital bed days (7) (iv) 0.0046

28 Weeks since GP visit, family (17) (x) 0.0045 Claim of non-GP specialist (17) (v) 0.0064 Prescription indication (2) (ii) 0.0044

29 Weeks since specialist (30) (v) 0.0044 Prescription indication (3) (ii) 0.0063 Resistance to J01XE01 (1) (iii) 0.0044

30 Municipal DID of J01CF01 (ii) 0.0039 Claim of non-GP specialist (24) (v) 0.0061 Days since hospital (1) (iv) 0.0044

All variables are measured relative to the laboratory test date and refer to the patient unless otherwise specified
by family relation, region or clinic. Numbers in brackets indicate the recency of the observation. For instance,

“prescription ATC code (3)” contains the ATC code (The Anatomical Therapeutic Chemical) of the patient’s 3rd

most recent prescription relative to the test date. DID stands for defined daily dose per 1000 inhabitants per day

and codes of the form J01**** are the ATC code of a specific antibiotic.
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A.6 Receiver operating characteristic curve
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Figure 6: Receiver operating characteristic (ROC) curve for XGBoost. The ROC

plots all trade-offs between true positive and false positive rates which are achievable

by a prediction technology for a binary outcome. A technology with perfect predictions

achieves a true positive rate of one and a false positive rate of zero. The dashed diagonal

represents the ROC curve of a prediction technology which is as good as random draws,

i.e. providing no information.
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A.7 Risk predictions beyond the analysis sample
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(a) In-sample non-UTI and out-of-sample random population
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(b) In-sample UTI and out-of-sample initial UTI-indicated prescriptions

Figure 7: In-sample and out-of-sample predicted risk distributions. Bars with fewer

than 10 patients have been removed due to anonymity restrictions. The samples without

laboratory tests are drawn such that they have the same number of observations as the

corresponding analysis sample for y = 0 and y = 1.
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Appendix B Optimal policies

B.1 Single-cutoff rule without delegation to physicians

We motivate the policy without delegation to physicians by observing the positive relation between

E[y] and m(x) in Figure 1. Assume the expected bacterial rate conditional on predicted risk is

a strictly increasing and continuous function of predicted risk, i.e. E{y|m(x)} = f(m(x)) with

f(0) = 0 and f(1) = 1. Then, the optimal prescription policy, δ(m(x), k), relative to the relevant

payoff parameters with β
α ∈ [0, 1] will satisfy

δ(m(x), k) = 1 ⇔ E{π(δ = 1; y) | m(x)} > E{π(δ = 0; y) | m(x)}

⇔ E{y | m(x)} >
β

α

⇔ m(x) > f−1

(
β

α

)
≡ k.

(8)

Since the inverse of a strictly increasing function on a bounded interval has an inverse that is also

strictly increasing, the optimal policy is a step-function where larger values of β
α results in larger cut-

off k and prioritizes reduction in antibiotic use at the cost of fewer treated UTI, and smaller values

of β
α results in smaller cut-off k prioritizing more treated UTI at the cost of increasing antibiotic

use.

B.2 Two-cutoff rule with delegation to physicians

We motivate the form of our combined physician and algorithmic policy by observing Figure 2

which shows E{y|m(x)} conditional on the physician decision. Assume E{y|m(x), d = 1} =

g(m(x)) is strictly increasing and continuous with g(0) = 0 and g(1) = 1. Similarly, assume

E{y|m(x), d = 0} = h(m(x)) is strictly increasing and continous with h(0) = 0 and h(1) = 1.

Lastly, assume g(m(x)) > h(m(x)) for all m(x) ∈ (0, 1). In this case, the optimal prescription

policy, δ(m(x), kL, kH), relative to the payoff parameters with β
α ∈ (0, 1) will overwrite physician

decisions when

δ = 0 | d = 1 ⇔ E{π(δ = 1; y) | m(x), d = 1} ≤ E{π(δ = 0; y) | m(x), d = 1}

⇔ E{y | m(x), d = 1} ≤ β

α

⇔ m(x) ≤ g−1

(
β

α

)
≡ kL,

(9)
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as well as when

δ = 1 | d = 0 ⇔ E{π(δ = 1; y) | m(x), d = 0} > E{π(δ = 0; y) | m(x), d = 0}

⇔ E{y | m(x), d = 0} >
β

α

⇔ m(x) > h−1

(
β

α

)
≡ kH .

(10)

We used that the inverse of a strictly increasing function on a bounded interval has an inverse that

is also strictly increasing. Since g(kL) = β
α = h(kH) < g(kH), we must have that kL < kH and

that the optimal policy has an interval (kL, kH) wherein it is optimal that the algorithm does not

interfere with physician decisions.
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Appendix C Policy outcomes using LASSO for prediction

Table 7 Counterfactual outcomes for 2011 and 2012 using

Lasso, full automation

k 0.389

Change in treated UTI, in % 0.0 [ −1.7, 1.6]

Change in antibiotic use, in % 11.3 [ 9.7, 12.9]

Change in overprescribing, in % 28.7 [ 25.6, 32.0]

Physician decisions overruled, in % 41.2 [ 40.8, 41.7]

95% confidence intervals are based on 1000 bootstrap samples of 2011

and 2012 where machine learning predictions and the policy parameter

k remain fixed.

Table 8 Counterfactual policy outcomes for 2011 and

2012 using Lasso, optimal delegation

kL 0.300

kH 0.633

Change in treated UTI, in % 0.0 [ −0.9, 1.0]

Change in antibiotic use, in % −7.0 [ −7.7, −6.2]

Change in overprescribing, in % −17.6 [−18.9,−16.3]

Physician decisions overruled, in % 11.4 [ 11.1, 11.7]

Patients delegated to physicians, in % 62.3 [ 61.9, 62.8]

Consultations 48, 406

UTIs 18, 815

Treated UTIs 11, 402

Antibiotic prescriptions 18, 872

Overprescribing 7, 470

95% confidence intervals are based on 1000 bootstrap samples of 2011

and 2012 where Lasso predictions and the policy parameter (kL, kH)

remain fixed.

35



Appendix D Ex ante policy parameters

For the main results in Table 3, policy parameters kL and kH are optimized ex post, following

the literature (Bayati et al. 2014, Kleinberg et al. 2018a, Yelin et al. 2019, Hastings et al. 2020,

Mullainathan and Obermeyer 2022).19 That is, we solve equations (4) and (6) after observing

machine learning predictions, prescription choices, and test outcomes for 2011 and 2012. In a real-

world application, both policy parameters would need to be determined ahead of time. There are

many potential ways to go about this task, see for example Hazan (2022). Here, we show that simple

ways to determine and update the policy parameters ex ante suffice to realize the policy results.

Specifically, we split the years 2011 and 2012 into intervals and set kL and kH ex ante for an

interval using only data from the preceding interval. We implement this procedure for intervals of

one year, that is using 2011 to determine policy parameters for 2012, as well as for intervals of one

half-year, one quarter, and one month. As the first interval is set apart to fix policy parameters ex

ante, the longest overlapping evaluation period needed for a comparision between the four interval

definitions is the full year 2012. Figure 8 shows the ex ante counterfactual results with the added

dashed vertical lines showing our main results from Table 3.

Yearly

Half-yearly

Quarterly

Monthly

 

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Percent

Antibiotic use Treated UTI

Figure 8: Policy results for 2012, updating parameters ex ante at yearly, half-yearly,

quarterly and monthly intervals. The dashed lines show the main results in Table 3.

Yearly policy parameters cannot reproduce the main results. The number of correctly treated

bacterial UTIs increases while the reduction in antibiotic use is substantially lower than in the main

results. Yet, by updating policy parameters at half-yearly, quarterly, and monthly intervals, the

main policy results, where parameters are set ex post, can be attained. Table 9 shows all ex ante

and ex post 2012 policy results for each interval definition confirming that the different intervals do

not result in significantly varying policy outcomes except for the yearly interval length.

19An exception are experiments, e.g. Dubé and Misra (2023).
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Table 9 Policy results for 2012 with policy parameters set ex ante and ex post

Change in antibiotic use (%) Change in treated UTI (%)

kL, kH computed Ex post Ex ante Ex post Ex ante

Yearly -8.6 [-9.8, -7.4] -5.0 [-6.1, -3.9] 0.0 [-1.5, 1.4] 3.0 [1.6, 4.4]

Half-yearly -8.7 [-9.7, -7.5] -7.9 [-8.9, -6.9] 0.0 [-1.3, 1.3] -0.0 [-1.4, 1.3]

Quarterly -8.8 [-9.9, -7.6] -8.7 [-9.9, -7.7] 0.0 [-1.3, 1.4] -0.4 [-1.8, 1.0]

Monthly -9.2 [-10.3, -8.1] -9.3 [-10.3, -8.2] 0.0 [-1.4, 1.3] -1.0 [-2.4, 0.3]

95% confidence intervals are based on 1000 bootstrap samples where machine learning predictions

and policy parameters (kL, kH) remain fixed.
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Appendix E Alternative policy objectives

Motivated by common public health policy considerations, we have focused on the policy objective

of reducing antibiotic use without treating fewer patients with bacterial UTI (WHO 2012, 2014). Al-

ternative policy objectives can be attained. Figure 9 shows the set of attainable changes in antibiotic

use and the number of treated bacterial UTIs for all possible policy parameters 0 ≤ kL ≤ kH ≤ 1.

The full range can be seen in Figure 10. The upper bound of this set represents the payoff-

maximizing trade-offs between antibiotic use and treated UTIs.
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Figure 9: Policy outcomes as a function of policy parameters (kL, kH)

In the upper left quadrant, antibiotic use is reduced while the number of treated bacterial UTIs

is increased. In this region, any policy maker will prefer the counterfactual policy outcomes relative

to the status quo regardless of policy maker preferences α > 0 and β > 0. Our main result lies

at the boundary of this region where the upper bound intercepts the horizontal axis. Here, the

change in the number of treated bacterial infections is zero and the change in antibiotic use is

−8.1 percent. Where the upper bound intersects the vertical axis, the counterfactual policy keeps

the number of antibiotic prescriptions at initial consultations constant but increases the number of

treated bacterial infections by 7.0 percent. Although the overall use of antibiotics is unchanged, the

more efficient use of antibiotics still leads to a reduction in overprescribing by 10.5 percent.

Larger reductions in antibiotic use can be obtained, but not without decreasing the number of

treated bacterial infections. For instance, reducing antibiotic use by 20.0 percent would require 10.8

percent of patients with bacterial infections, who were given antibiotics, to delay treatment until
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test results are available. Analogously, a 20 percent increase in treated UTI could be attained but

only with a 17.9 percent increase in antibiotic use. Ultimately, policy maker preferences unobserved

to us determine the optimal trade-off and implementation of machine learning based policy.

The line on the lower bound of the set in Figure 9 represents the changes in antibiotic use and

treated UTIs for policies that do not delegate any decisions to physicians. Full automation is inferior

throughout the risk range which generalizes the findings in Section 6.1.
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Figure 10: The set of all policy outcomes as a function of the policy parameters

(kL, kH) for 2011 and 2012. The dashed rectangle shows the policy outcomes highlighted

in Figure 9 in the main text.
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Appendix F Efficiency and group fairness

The policies we consider are redistributive, following much of the literature (Kleinberg et al. 2015,

2018a, Hastings et al. 2020, Mullainathan and Obermeyer 2022). Fairness concerns become salient,

perhaps more so than for human biases, when machine learning predictions form the basis of decision

outcomes (Kleinberg et al. 2018b, Cowgill and Tucker 2019, Rambachan et al. 2020, Coston et al.

2021). A growing literature has pointed out that excluding sensitive predictors in pursuit of fairness

can be detrimental for aggregate outcomes as well as for disadvantaged groups (Kleinberg et al.

2018b, Cowgill and Tucker 2019, Manski et al. 2022). Hence, to cast light on potential fairness

concerns and the cost for alleviating them, we assess and adapt our policy function on subgroups

of patients but keep risk predictions unchanged.

We take a pragmatic approach and assess groups divided by age, gender, income, and immigra-

tion status. Fairness concerns are salient for these patient characteristics but they are also important

predictors of UTI reported in Table 6 in Appendix A.5. We first quantify redistribution between

subgroups based on the main policy parameters reported in Section 6. Panel A in Tables 10 to

13 shows that antibiotic use decreases more strongly for young, male, immigrant, and high income

patients. All subgroups, except for income-based groups, deviate significantly from the aggregate

outcome of the main policy. The main policy increases the number of treated UTI for women while

lowering the number of treated UTIs for men, and fails to lower overall antibiotic use for women.

Similarly, it reduces the number of treated UTI for patients with immigrant status. Hence, the

main policy achieves reductions at the cost of discrepancies between patient subgroups and violates

the constraint on the number of treated UTI.

To maintain the number of treated UTI for each group, we solve equation (6) separately by

subgroup and evaluate policy outcomes. Panel B of Tables 10 to 13 reports group-specific and

aggregate outcomes for policy parameters kjL and kjH optimized for patient group j. With this

policy, reductions in antibiotic use are similar across groups with the exception that males have a

larger reduction than women. Throughout, fewer physician decisions are overruled in aggregate and

more decisions are delegated to physicians compared to the main policy. The group-specific policies

reduce aggregate antibiotic use by 6.1 to 8.1 percent compared to the 8.1 percent reduction attained

by the main policy, illustrating the trade-off between efficiency and group fairness.
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Table 10 Counterfactual policy outcomes by age

age < 48 48 ≤ age Aggregated

Panel A: Main algorithm

kL 0.320 0.320 0.320

kH 0.601 0.601 0.601

Change in treated UTI, in % −19.9 15.2 0.0
[−21.1,−18.7] [−13.5,−16.7] [−1.0, 1.0]

Change in antibiotic use, in % −28.7 10.7 −8.1
[−29.6,−27.7] [9.4, 12.0] [−8.9,−7.2]

Change in overprescribing, in % −39.3 2.3 −20.3
[−40.9,−37.6] [0.2, 4.8] [−21.7,−18.8]

GP decisions overruled, in % 12.8 17.1 15.0
[12.4, 13.2] [16.6, 17.6] [14.7, 15.3]

Patients delegated to GPs, in % 51.4 54.2 52.8
[50.7, 52.0] [53.6, 54.9] [52.3, 53.3]

Panel B: Sub-group algorithm

kjL 0.211 0.378 -

kjH 0.535 0.653 -

Change in treated UTI, in % 0.0 0.0 0.0
[−1.0, 0.9] [−1.5, 1.5] [−1.0, 1.0]

Change in antibiotic use, in % −4.8 −7.2 −6.1
[−5.6,−4.0] [−8.5,−6.0] [−6.8,−5.3]

Change in overprescribing, in % −10.7 −20.9 −15.3
[−12.1,−9.1] [−23.2,−18.7] [−16.7,−14.0]

GP decisions overruled, in % 6.2 18.6 12.4
[5.9, 6.5] [18.1, 19.1] [12.1, 12.8]

Patients delegated to GPs, in % 74.0 48.2 61.0
[73.4, 74.6] [47.6, 48.9] [60.6, 61.5]

Consultations 24, 047 24, 359 48, 406

Bacterial UTIs 7, 744 11, 071 18, 815

Treated UTIs 4, 935 6, 467 11, 402

Antibiotic prescriptions 9, 004 9, 868 18, 872

Overprescribing 4, 069 3, 401 7, 470

95% confidence intervals are based on 1000 bootstrap samples of 2011 and 2012 where machine

learning predictions and the policy parameters (kL, kH) and (kj
L, k

j
H) remain fixed.
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Table 11 Counterfactual policy outcomes by gender

Female Male Aggregated

Panel A: Main algorithm

kL 0.320 0.320 0.320

kH 0.601 0.601 0.601

Change in treated UTI, in % 5.0 −33.1 0.0
[4.0, 6.0] [−36.5,−29.8] [−1.0, 1.0]

Change in antibiotic use, in % 0.6 −51.9 −8.1
[−0.2, 1.4] [−53.9,−49.8] [−8.9,−7.2]

Change in overprescribing, in % −6.9 −69.3 −20.3
[−8.3,−5.4] [−71.7,−66.8] [−21.7,−18.8]

GP decisions overruled, in % 13.4 20.0 15.0
[13.0, 13.7] [19.3, 20.7] [14.7, 15.3]

Patients delegated to GPs, in % 63.5 18.1 52.8
[63.0, 64.1] [17.4, 18.8] [52.3, 53.3]

Panel B: Sub-group algorithm

kjL 0.326 0.207 -

kjH 0.650 0.520 -

Change in treated UTI, in % 0.0 0.0 0.0
[−1.0, 0.9] [−3.4, 3.5] [−1.0, 0.9]

Change in antibiotic use, in % −5.4 −20.4 −7.9
[−6.2,−4.6] [−22.5,−18.2] [−8.7,−7.1]

Change in overprescribing, in % −14.5 −39.4 −19.9
[−15.8,−13.0] [−42.4,−36.2] [−21.1,−18.6]

GP decisions overruled, in % 12.2 15.2 12.9
[11.9, 12.5] [14.5, 15.8] [12.6, 13.2]

Patients delegated to GPs, in % 65.5 37.1 58.8
[65.0, 66.0] [36.2, 38.0] [58.3, 59.2]

Consultations 36, 960 11, 446 48, 406

Bacterial UTIs 16, 101 2, 714 18, 815

Treated UTIs 9, 905 1, 497 11, 402

Antibiotic prescriptions 15, 761 3, 111 18, 872

Overprescribing 5, 856 1, 614 7, 470

95% confidence intervals are based on 1000 bootstrap samples of 2011 and 2012 where machine

learning predictions and the policy parameters (kL, kH) and (kj
L, k

j
H) remain fixed.
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Table 12 Counterfactual policy outcomes by immigration status

Immigrant Non-immigrant Aggregated

Panel A: Main algorithm

kL 0.320 0.320 0.320

kH 0.601 0.601 0.601

Change in treated UTI, in % −33.7 4.4 0.0
[−36.7,−30.7] [3.4, 5.5] [−1.0, 1.0]

Change in antibiotic use, in % −46.9 −1.5 −8.1
[−48.9,−44.8] [−2.5,−0.6] [−8.9,−7.2]

Change in overprescribing, in % −59.5 −11.4 −20.3
[−62.2,−56.6] [−13.0,−9.9] [−21.7,−18.8]

GP decisions overruled, in % 20.0 14.0 15.0
[19.2, 20.8] [13.7, 14.3] [14.7, 15.3]

Patients delegated to GPs, in % 32.8 56.7 52.8
[31.8, 33.9] [56.2, 57.3] [52.3, 53.3]

Panel B: Sub-group algorithm

kjL 0.245 0.332 -

kjH 0.459 0.627 -

Change in treated UTI, in % 0.0 0.0 0.0
[−3.1, 3.1] [−1.1, 1.0] [−1.1, 1.0]

Change in antibiotic use, in % −9.2 −6.6 −7.0
[−11.4,−6.9] [−7.5,−5.7] [−7.8,−6.2]

Change in overprescribing, in % −18.0 −17.6 −17.7
[−21.5,−14.5] [−19.1,−16.1] [−19.0,−16.3]

GP decisions overruled, in % 14.0 13.9 13.9
[13.2, 14.7] [13.6, 14.3] [13.6, 14.3]

Patients delegated to GPs, in % 53.8 55.8 55.5
[52.8, 55.0] [55.3, 56.3] [55.0, 55.9]

Consultations 7, 934 40, 472 48, 406

Bacterial UTIs 2, 269 16, 546 18, 815

Treated UTIs 1, 322 10, 080 11, 402

Antibiotic prescriptions 2, 708 16, 164 18, 872

Overprescribing 1, 386 6, 084 7, 470

95% confidence intervals are based on 1000 bootstrap samples of 2011 and 2012 where machine

learning predictions and the policy parameters (kL, kH) and (kj
L, k

j
H) remain fixed.
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Table 13 Counterfactual policy outcomes by income

Income < 175.000 175.000 ≤ Income Aggregated

Panel A: Main algorithm

kL 0.320 0.320 0.320

kH 0.601 0.601 0.601

Change in treated UTI, in % 1.2 −1.1 0.0
[−0.4, 2.7] [−2.5, 0.3] [−1.0, 1.0]

Change in antibiotic use, in % −6.7 −9.4 −8.1
[−7.9,−5.3] [−10.4,−8.3] [−8.9,−7.2]

Change in overprescribing, in % −19.0 −21.5 −20.3
[−21.1,−16.4] [−23.3,−19.7] [−21.7,−18.8]

GP decisions overruled, in % 15.6 14.4 15.0
[15.1, 16.0] [13.9, 14.8] [14.7, 15.3]

Patients delegated to GPs, in % 49.7 56.0 52.8
[49.1, 50.4] [55.3, 56.6] [52.3, 53.3]

Panel B: Sub-group algorithm

kjL 0.326 0.303 -

kjH 0.601 0.626 -

Change in treated UTI, in % 0.0 0.0 0.0
[−1.5, 1.6] [−1.3, 1.3] [−1.0, 1.0]

Change in antibiotic use, in % −8.1 −8.1 −8.1
[−9.4,−6.8] [−9.1,−7.0] [−8.9,−7.2]

Change in overprescribing, in % −21.0 −20.1 −20.5
[−23.0,−18.7] [−21.7,−18.3] [−21.7,−19.1]

GP decisions overruled, in % 16.2 12.3 14.3
[15.7, 16.6] [11.9, 12.7] [14.0, 14.6]

Patients delegated to GPs, in % 48.1 61.1 54.5
[47.6, 48.8] [60.5, 61.8] [54.1, 55.0]

Consultations 24, 603 23, 803 48, 406

Bacterial UTIs 9, 728 9, 087 18, 815

Treated UTIs 5, 576 5, 826 11, 402

Antibiotic prescriptions 9, 108 9, 764 18, 872

Overprescribing 3, 532 3, 938 7, 470

95% confidence intervals are based on 1000 bootstrap samples of 2011 and 2012 where machine learning

predictions and the policy parameters (kL, kH) and (kj
L, k

j
H) remain fixed.
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Appendix G Waiting for molecule-specific resistance information

Table 14 Antibiotic resistance for positive E. coli test results conditional on d and kH ≤ m(x)

d = 0, kH ≤ m(x) d = 1, kH ≤ m(x)

Antibiotic (ATC-code) Obs Resistance Obs Resistance Difference

Ampicillin (J01CA01) 1,237 0.437 1,907 0.390 0.047 [0.012 ,0.083]

Mecillinam (J01CA11) 1,237 0.058 1,907 0.036 0.023 [0.007 ,0.038]

Trimethoprim (J01EA01) 1,237 0.310 1,907 0.261 0.050 [0.017 ,0.082]

Sulfamethizole (J01EB02) 1,237 0.373 1,907 0.331 0.042 [0.007 ,0.077]

Ciprofloxacin (J01MA02) 1,237 0.089 1,907 0.056 0.033 [-0.003 ,0.068]

Nitrofurantion (J01XE01) 1,237 0.042 1,907 0.027 0.015 [0.002 ,0.029]

Table 14 shows resistance rates for E. coli bacteria for patients with predicted risk m(x) larger than threshold

kH , conditional on physician treatment decisions and a positive E.coli test result. We find small differences in

resistance against most antibiotics prescribed for UTI. When physicians treat instantly and bacteria are found,

these have one to five percentage points lower resistance levels than when physicians decide to wait and bacteria

are found.
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Appendix H Policy outcomes and sample selectivity
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Figure 11: Policy outcomes by laboratory testing intensity, full automation
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Figure 12: Policy outcomes by laboratory testing intensity, optimal delegation
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Figure 13: Sizes of samples split by laboratory test intensity. For a given test intensity,

the two samples sum to the full sample size of 48,406.
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